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ABSTRACT
This article proposes bootstrap-based multiple testing procedures for quantile treatment e!ect (QTE)
heterogeneity under the assumption of selection on observables, and shows its asymptotic validity. Our
procedure can be used to detect the quantiles and subgroups exhibiting treatment e!ect heterogeneity.
We apply the multiple testing procedures to data from a large-scale Pakistani school report card experiment,
and uncover evidence of policy-relevant heterogeneous e!ects from information provision on child test
scores. Furthermore, our analysis reinforces the importance of preventing the in"ation of false positive
conclusions because 63% of statistically signi#cant QTEs become insigni#cant once corrections for multiple
testing are applied.
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1. Introduction

Individuals di!er not only in their characteristics but also in
how they respond to a treatment or intervention. Therefore,
treatment e!ects may vary between subgroups de"ned by indi-
vidual characteristics. For example, providing report cards with
information on school test scores may make some parents more
likely to move their child to a better school than others based
on parental characteristics such as education. In addition, the
individuals’ response to a treatment may vary across quantiles of
the unconditional outcome distribution. This type of treatment
e!ect heterogeneity is o#en modeled via quantile treatment
e!ects (QTE), that is, the di!erence in unconditional outcome
quantiles between treatment and control groups. For example, if
a school information provision program improves the odds that
parents correctly perceive their child’s performance relative to
her peers, parental responses such as switching schools may vary
with the child’s relative performance, and hence QTE for the
e!ect of the intervention on the children’s performance would
not be constant.

Harnessing the potential policy bene"ts from treatment
e!ect heterogeneity—ranging from personalized medicine
to welfare reform parameters to customized marketing re-
commendations—requires understanding whether the hetero-
geneous e!ects are spurious. A multiple testing approach is
useful in this context because it provides a basis for judg-
ing the empirical relevance of treatment e!ect heterogene-
ity and sheds light on the pattern of treatment e!ect het-
erogeneity across di!erent population groups. For example,
policymakers may be able to modify the design of account-
ability programs in education more e!ectively if they know
which parents respond to market-level information on school
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quality. These parents may di!er systematically by predeter-
mined characteristics or by the location between speci"c per-
centiles of their child’s test score distribution. Our proposed
testing strategy can be used in many empirical applications to
guard against false positives as further outlined in the online
Appendix A.

Given the widespread interest in treatment e!ect hetero-
geneity and the importance of multiple comparisons correc-
tions, it is somewhat surprising that, to the best of our knowl-
edge, there has been no research that formally establishes the
asymptotic validity of a bootstrap multiple testing procedure
for functionals of QTE under the assumption of selection on
observables. The "rst contribution of this article is to "ll this
gap by providing a formal result of asymptotic validity when
the propensity scores that account for selection on observ-
ables are parametrically speci"ed. We consider a parametric
speci"cation of propensity scores in this article because, when
faced with a large set of covariates, researchers use a para-
metric speci"cation for the propensity score in their empiri-
cal application rather than consider a nonparametric speci"ca-
tion. A nonparametric speci"cation has attracted more atten-
tion from theoretical econometricians despite issues with its
practical implementation that include the well-known curse of
dimensionality.

The bootstrap-based procedures of multiple testing on dis-
tributional treatment e!ects that we introduce in this arti-
cle are motivated by current empirical practice. In many
empirical applications, researchers consider a binary treat-
ment e!ect model under selection on observables. Our test-
ing approach most closely complements three recent articles.
Lee and Shaikh (2014) proposed a multiple testing procedure
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for subgroup treatment e!ects in randomized experiments
that controls the family-wise error rate (FWER), that is, the
probability of rejecting at least one true null hypothesis, in
"nite samples. Bitler, Gelbach, and Hoynes (2017) adopted
a multiple testing procedure based on the Bonferroni cor-
rection to test for treatment e!ect heterogeneity across sub-
groups and over time. Last, our theoretical work is most closely
related to Zhang and Zheng (2020) who formally developed
bootstrap inference on QTEs in a very di!erent setting, by
considering a randomized experiment with covariate-adaptive
randomization studied earlier in Bugni, Canay, and Shaikh
(2018). Below, we further discuss how our study relates to
existing contributions in the treatment e!ect heterogeneity
literature.

Our proposed multiple testing procedure controls the FWER
in the strong sense and has greater power than Bonferroni-based
procedures. It can be used to "rst determine whether a treatment
has a (positive) e!ect for any quantile and detect treatment e!ect
heterogeneity across the outcome distribution and subgroups.
Further, it can identify the subgroups and outcome quantiles
for which the treatment e!ect is estimated to be conspicuous
beyond sampling variations. Finally, it lets us determine which
subgroups exhibit heterogeneous treatment e!ects.

To illustrate our proposed testing strategy, we reexamine
data from Andrabi, Das, and Khwaja’s (2017) Pakistani school
report card "eld experiment and present evidence that cor-
recting for multiple testing is empirically important and pol-
icy relevant. Speci"cally, 75% of the estimated statistically
signi"cant QTE of information provision on children’s test
scores become insigni"cant once multiple testing corrections
are applied. These "ndings also demonstrate that the signif-
icantly positive e!ects of providing information to parents
reported in Andrabi, Das, and Khwaja (2017) are concentrated
in the bottom quintile of the test score distribution. Further-
more, we "nd clear evidence of treatment e!ect heterogene-
ity in the full sample and every subgroup that we consider.
Taken together, our results shed new light on the e!ective-
ness of accountability programs, further indicating how schools
and parents respond to the release of information on student
performance.

1.1. Related Literature

In this section, we summarize how this article contributes
to the broad econometrics literature on treatment e!ect het-
erogeneity that was recently surveyed in both Athey and
Imbens (2017) and Abadie and Cattaneo (2018); as well as
adding to the economics of education literature providing evi-
dence on how school accountability programs impact academic
outcomes.

Since the publication of Bitler, Gelbach, and Hoynes (2006),
empirical researchers in multiple "elds, including the economics
of education, have increasingly provided evidence on distri-
butional impacts of policies and programs. Bitler, Gelbach,
and Hoynes (2006) used data from an experimental evaluation
of a welfare reform policy to present evidence of treatment
e!ect heterogeneity that would be predicted by a labor supply
model. However, the observed pattern would have been missed

if researchers had only reported a mean treatment e!ect. In
a follow-up article, Bitler, Gelbach, and Hoynes (2017) pre-
sented evidence that the treatment e!ect heterogeneity exhib-
ited in this welfare reform evaluation is also not fully charac-
terized by between-subgroup di!erences in average treatment
e!ects. Thus, although, early empirical investigations, includ-
ing Heckman, Smith, and Clements (1997) and Friedlander
and Robins (1997), document the importance of idiosyncratic
impact heterogeneity, the publication of Bitler, Gelbach, and
Hoynes (2006) made a compelling case that only estimating
average e!ects may be insu$cient.

Our article "rst contributes to a growing literature study-
ing inference on the quantile process and distributions of
treatment e!ects. In an early contribution, Koenker and Xiao
(2002) proposed asymptotic inference on the quantile regression
process, which can be subsequently applied to test for QTE
heterogeneity. Following a similar spirit, Chernozhukov and
Fernandéz-Val (2005) proposed subsampling-based testing. In
an in%uential article, Chernozhukov, Fernandez-Val, and Melly
(2013) developed a comprehensive framework of inferences on
counterfactual quantities built on the conditional distribution
functions of potential outcomes. Recently, Ding, Feller, and
Miratrix (2016) and Chung and Olivares (2020) considered per-
mutation tests for the distributional heterogeneity of treatment
e!ects.

Our testing strategy assumes selection on observables and
employs inverse probability weighting (IPW) estimators for
QTE of a binary treatment initially proposed in Firpo (2007).
Similar to our article, Donald and Hsu (2014) established weak
convergence of inverse-probability weighted quantile processes,
yet using a nonparametric series estimator of propensity scores,
and proposing critical values from simulating the limit pro-
cess instead of bootstrap. As noted at the outset of this sec-
tion, the literature on treatment e!ect heterogeneity is broad
and many contributions consider (i) di!erent settings, (ii) a
continuous or multivalued treatment, (iii) alternative causal
parameters, and (iv) distributional tests. As an example, Fan
and Wu (2010) consider the distribution of the di!erence in
potential outcomes in a switching regression framework. Zhang
and Zheng (2020) and Jiang et al. (2020) employed bootstrap
inference of QTE in randomized experiments where the setting
involves covariate-adaptive randomization and randomization
within matched pairs, respectively. Galvao and Wang (2015) and
Cattaneo (2010) provided practical estimation and inference
approaches for QTE with a continuous and multivalued treat-
ment, respectively, under the assumption of unconfoundedness.
Firpo and Pinto (2016) used inequality measures of the distribu-
tion of the potential outcomes to estimate inequality treatment
e!ects. Maier (2011) proposed a nonparametric test of distri-
butional equivalence of potential outcomes under selection on
observables. Finally, Goldman and Kaplan (2018) developed a
multiple testing procedure for quantiles at di!erent distributions
in two-sample Kolmogorov–Smirnov tests.

The second contribution of this article transpires from the
empirical results that contribute to a burgeoning empirical lit-
erature surveyed in Figlio and Loeb (2011), which explores
how school accountability programs impact education out-
comes. Economists have long argued that policies designed to
increase competition in markets for education can improve
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educational outcomes by increasing disadvantaged students’
access to high quality schools, and by causing under-performing
schools to become more e!ective or to shrink as families
“vote with their feet” (Friedman 1955; Becker 1995; Hoxby
2003). Further, by disclosing information about student and
school performance, educators may change their e!ort because
this a!ects the (implicit) market incentives faced by schools.
Indeed, empirical evidence shows that providing information
about school-level achievement directly to parents can in%uence
school choice in the United States (Hastings and Weinstein
2008), Canada (Friesen et al. 2012), the Netherlands (Koning
and Van der Wiel 2012), Brazil (Camargo et al. 2018), and
Pakistan (Andrabi, Das, and Khwaja 2017). However, school
performance has also been found to not be the main deter-
minant of choice and that preferences regarding schools are
heterogeneous across socioeconomic groups in the United
States (Hastings, Kane, and Staiger 2009), Chile (Schneider,
Elacqua, and Buckley 2006) , Pakistan (Carneiro, Das, and
Reis 2013), and the United Kingdom (Gibbons and Machin
2006).

1.2. Plan for the Article

The rest of this article is organized as follows: In Section 2,
we introduce the general testing procedures for treatment e!ect
heterogeneity across quantiles of the outcome distribution and
subgroups and provide a guide for the practical implementation
of these procedures. In Section 3, we illustrate the value of the
testing procedure by reexamining the Andrabi, Das, and Khwaja
(2017) experimental data. We describe the experiment and eco-
nomic model that underlie the data being investigated. This
model predicts heterogeneous treatment e!ects both within
and across subgroups. The concluding Section 4 summarizes
the contribution of using these testing approaches in empirical
microeconomic research and discusses directions for future
methodological work that can aid practitioners.

2. Methodology

In this section, we "rst introduce joint and multiple hypotheses
of QTE that can be used to test for treatment e!ect heterogeneity
within and across subgroups. Then we describe our stepwise
bootstrap testing approach for testing multiple hypotheses.

2.1. Testing for Treatment E!ect Heterogeneity

To develop a multiple testing procedure for various hypotheses
of QTE, we consider the following data generating set-up. Let Di
be a random variable that takes values in {0, 1}, where Di = 1
indicates participation in the program by individual i and Di =
0 being placed in the control group. Let Yi be the observed
outcome for individual i de"ned as

Yi = Y1iDi + Y0i(1 − Di),

where Y1i denotes the potential outcome of individual i treated
in the program and Y0i that of the same individual not treated
by the program. Let Xi be a vector of observed covariates
of individual i. The researcher observes a random sample of

(Yi, Di, Xi)n
i=1. We make the following standard assumptions of

selection on observables and common support.

Assumption 2.1. (i) (Y1i, Y0i) is conditionally independent of Di
given Xi.

(ii) There exists ε > 0 such that for all x ∈ X and d ∈ {0, 1},
ε ≤ pd(x) ≤ 1 − ε, where pd(x) = P{Di = d|Xi = x}.

Furthermore, we assume that Xi can be partitioned as Xi =
(X1i, Zi), where Zi is a discrete random subvector and X1i indi-
cates the vector that is not included in Zi. The subvector Zi
determines to which subgroup individual i belongs. We are
interested in the QTEs at the τ th percentile, with τ running in a
continuum. For each subgroup z in the support of Zi, we de"ne
the unconditional quantile of the potential outcomes at the τ th
percentile as follows: with τ ∈ (0, 1),

qd(τ , z) = inf{q ∈ R : P
{

Ydi ≤ q|Zi = z
}

≥ τ }.
The subgroup QTE at a quantile-subgroup pair (τ , z) is then
de"ned by

q#(τ , z) = q1(τ , z) − q0(τ , z).
We next introduce individual hypotheses which are spe-

ci"c to a quantile-subgroup pair (τ , z). Later, we build joint
and multiple hypothesis testing problems from these individual
hypotheses. First, let τL, τU ∈ (0, 1) be such that τL < τU and
let Z be the support of Zi. We take S = [τL, τU ] × Z to be
the set of quantile-subgroup pairs (τ , z) on which we focus. We
are interested in the hypothesis of the following form: for each
(τ , z) ∈ S,

H0(τ , z) : γ (q#; τ , z) = 0 vs. H1(τ , z) : γ (q#; τ , z) &= 0,
where γ (q#; τ , z) is a functional of q# that depends on (τ , z).
Examples of speci"c hypothesis testing problems involving QTE
are provided in Table 1. This article’s framework applies to a wide
range of functionals γ as long as γ (q#; τ , z) is continuous in q#

uniformly over (τ , z). For example, if we set
γ (q#; τ , z) = |q#(τ , z)|,

testing the hypothesis H0(τ , z) corresponds to testing for the
presence of QTE for (τ , z). This hypothesis can be used to
test whether a treatment has a nonzero e!ect for any quantile-
subgroup pair. As another example, if we take

γ (q#; τ , z) = max{q#(τ , z), 0}, (1)
testing the hypothesis H0(τ , z) amounts to testing the null
hypothesis that the QTE for (τ , z) is non-positive.

The individual hypotheses can also be used to test for QTE
heterogeneity. For example, suppose that we set

γ (q#; τ , z) = |q#(τ , z) − q̄#(z)|, (2)
where

q̄#(z) = 1
τU − τL

∫ τU

τL
q#(τ , z)dτ . (3)

Then testing if H0(τ , z) is true jointly for all (τ , z) ∈ S is
tantamount to testing whether there is QTE heterogeneity across
quantiles within subgroup z. In the next two subsections, we
demonstrate how to combine the individual hypotheses, as out-
lined above, to construct joint and multiple hypothesis testing
problems.
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Table 1. Examples of joint and multiple hypothesis tests involving QTE.

Hypothesis being tested Indiv. hypothesis Joint hypothesis Multiple hypothesis
γ (q#; τ , z) %(q# ; S′) {Sw : w ∈ W}

Testing for the presence of QTE
across quantiles and subgroups

H0(τ , z) : q#(τ , z) = 0 vs.
H1(τ , z) : q#(τ , z) &= 0

|q#(τ , z)| sup
(τ ,z)∈S′

|q#(τ , z)| {{τ , z} : (τ , z) ∈ [τL , τU] × Z}

Testing for positive QTE across
quantiles and subgroups

H0(τ , z) : q#(τ , z) ≤ 0 vs.
H1(τ , z) : q#(τ , z) > 0

max{q#(τ , z), 0} sup
(τ ,z)∈S′

max{q#(τ , z), 0} {{τ , z} : (τ , z) ∈ [τL , τU] × Z}

Testing for QTE heterogeneity in
some subgroups

H0(τ , z) : q#(τ , z) = q̄#(z) vs.
H1(τ , z) : q#(τ , z) &= q̄#(z)

|q#(τ , z) − q̄#(z)| sup
(τ ,z)∈S′

|q#(τ , z) − q̄#(z)| {{τ , z} : (τ , z) ∈ [τL , τU] × Z}

Testing for which subgroups QTE are
heterogeneous

H0(τ , z) : q#(τ , z) = q̄#(z) vs.
H1(τ , z) : q#(τ , z) &= q̄#(z)

|q#(τ , z) − q̄#(z)| sup
τ∈[τL ,τU]

|q#(τ , z) − q̄#(z)| {{(τ , z) : τ ∈ [τL , τU]} : z ∈ Z}

NOTE: We de"ne q̄#(z) = 1
τU−τL

∫ τU
τL

q#(τ , z)dτ , that is, the mean QTE for the whole sample and conditional on subgroup.

2.1.1. Joint Hypothesis Testing
In many empirical applications, the researcher is primarily inter-
ested in whether H0(τ , z) is true for all (τ , z) ∈ S. To conduct
this test, we "rst combine the individual hypotheses into a joint
hypothesis:

H0 : %(q#; S) = 0 vs. H1 : %(q#; S) &= 0, (4)

where for each S′ ⊂ S, we de"ne

%(q#; S′) = sup
(τ ,z)∈S′

γ (q#; τ , z).

Thus, rejecting the null hypothesis in H0 in Equation (4) means
rejecting the hypothesis that H0(τ , z) is true for all (τ , z) ∈ S.
For example, testing H0 against H1 in Equation (4) with γ as
in Equation (1) is equivalent to testing whether QTE is positive
at some (τ , z) ∈ S. Similarly, testing H0 against H1 with γ as
de"ned in Equation (2) is equivalent to testing, within subgroup
z, whether the QTE are constant across quantiles.

2.1.2. Multiple Hypothesis Testing
O#en, to obtain new policy insights, we are interested in "nding
out which quantile-subgroup pairs (τ , z) are responsible for the
rejection of the joint null hypothesis expressed in Equation (4).
To address this question, let us consider the following multiple
hypothesis testing problem. First suppose that the set S is parti-
tioned as follows:

S =
⋃

w∈W
Sw, (5)

for some index set W. Our focus is to "nd w ∈ W such that
the violation of the joint null hypothesis expressed in Equation
(4) is due to the violation of H0(τ , z) for some (τ , z) ∈ Sw. For
example, if one takes γ as de"ned in Equation (1) and Sw =
{(τ , z)} with w = (τ , z), and W = [τL, τU ] × Z , our interest
is in "nding which (τ , z) are responsible for rejecting the null
hypothesis that QTE are nonpositive for all (τ , z) ∈ [τL, τU ]×Z .

We "rst de"ne

WP = {w ∈ W : γ (q#; τ , z) &= 0, for some (τ , z) ∈ Sw}.

WP is the set of indexes w ∈ W such that H0(τ , z) is violated for
some (τ , z) ∈ Sw. This set depends on the distribution P of data
through its dependence on q#, and hence we use subscript P in
WP to make this dependence explicit.

Now suppose that one constructs a subset Ŵ ⊂ W using
observed variables, and proposes the data-dependent set Ŵ as
the collection of indices w ∈ W such that H0(τ , z) is violated at
some (τ , z) ∈ Sw in the sample at hand. However, if it turns out
that

Ŵ &⊂ WP, (6)

then the set Ŵ contains a false positive, that is, there exists
w ∈ Ŵ such that the null hypothesis H0(τ , z) is mistaken to
be violated for some (τ , z) ∈ Sw although the hypothesis is in
fact true for all (τ , z) ∈ Sw. The multiple testing literature aims
to obtain a data-dependent set Ŵ such that the probability of
Equation (6) is asymptotically controlled under a small number
α > 0, that is,

lim inf
n→∞ P{Ŵ ⊂ WP} ≥ 1 − α. (7)

The probability of the event in (6) is called the FWER in the
multiple testing literature. The set Ŵ satisfying (7) is said to con-
trol FWER asymptotically at α. As the asymptotic control holds
for all probabilities P, this is called strong control of FWER,
see (Lehmann and Romano 2005, sec. 9.1). The procedures we
introduce in the next subsection construct such a set Ŵ.

2.2. A Bootstrap Step-Down Procedure for Multiple Testing

2.2.1. Estimation of QTE and Bootstrap Joint Testing
The identi"cation and inference on q#(τ , z) for each quantile is
established by Firpo (2007). Here, we propose joint hypothesis
testing and multiple hypothesis testing procedures and provide
conditions under which the FWER is controlled asymptotically.

To motivate estimation of q#(τ , z), note that we can identify
qd(τ , z) by

qd(τ , z) = arg min
q

E[ωdiρτ

(
Yi − q

)
|Zi = z], d = 1, 0,
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where ωdi = 1{Di = d}/pd(Xi) and ρτ (x) = x · (τ − 1{x ≤ 0})
is the check function. Thus, we estimate qd(τ , z) by

q̂d(τ , z) = arg min
q

1∑n
i=1 1 {Zi = z} (8)

×
n∑

i=1
ω̂diρτ

(
Yi − q

)
1 {Zi = z} ,

with ω̂di = 1{Di = d}/p̂d(Xi), and p̂d(x) is the estimated
propensity score. Following Smith and Todd (2005), the propen-
sity score p̂(x) is estimated using data from the full sample. As
in Firpo (2007), we obtain

q̂#(τ , z) = q̂1(τ , z) − q̂0(τ , z).

To construct a joint test or a multiple test, we calculate a
critical value using a bootstrap method. Speci"cally, we "rst
resample with replacement from the original sample B times
and, using each bootstrap sample, construct

q̂#∗
b (τ , z) = q̂∗

1,b(τ , z) − q̂∗
0,b(τ , z),

where q̂∗
1,b(τ , z) and q̂∗

0,b(τ , z) are obtained just as q̂1(τ , z) and
q̂0(τ , z) were constructed but using the bth bootstrap sample.

For joint hypothesis testing expressed in Equation (4), we
construct test statistics

T = %(q̂#; S), and T∗
b = %(q̂#∗

b − q̂#; S),

and use the critical value as the (1 − α)-quantile from the boot-
strap distribution of T∗

b . By subtracting q̂# in T∗
b , we recenter

the bootstrap test statistic in order to impose the least favorable
con"guration under the null hypothesis.

Extending the results to the case of cluster dependence is
straightforward, as long as two conditions are satis"ed: "rst,
the observations are all identically distributed across the cross-
sectional units, and second, the number of the clusters increases
to in"nity as the number of observations does so. For boot-
strap inference, one can use the block bootstrap in which one
resamples clusters with replacement instead of individual sam-
ple units.

2.2.2. Bootstrap Multiple Testing Procedure for QTE
The multiple testing procedure adapts the step-down method of
Romano and Wolf (2005) and Romano and Shaikh (2010) to our
set-up. For each subset W′ ⊂ W, we de"ne

T∗
b (W′) = sup

w∈W′
%(q̂#∗

b − q̂#; Sw),

where the Sws constitute the partition of S in Equation (5).
Setting W̃1 = W, we take ĉ1−α(W̃1) to be the smallest c such
that

1
B

B∑

b=1
1
{

T∗
b (W̃1) ≤ c

}
≥ 1 − α.

That is, at ĉ1−α(W̃1), the fraction of test statistics across the B
bootstrap samples that exceed that critical value is at most α.
Then, we retain those quantiles that do not exceed the critical
value ĉ1−α(W̃1), that is, we de"ne

W̃2 =
{

w ∈ W : %(q̂#; Sw) ≤ ĉ1−α(W̃1)
}

,

so that W̃2 is a subset of W̃1. Now, we take ĉ1−α(W̃2) to be the
smallest c such that

1
B

B∑

b=1
1
{

T∗
b (W̃2) ≤ c

}
≥ 1 − α.

Using the above expression, we next de"ne

W̃3 =
{

w ∈ W : %(q̂#; Sw) ≤ ĉ1−α(W̃2)
}

.

This procedure is repeated until at step k, we obtain

W̃k =
{

w ∈ W : %(q̂#; Sw) ≤ ĉ1−α(W̃k−1)
}

such that no further element of W̃k is eliminated (i.e., W̃k =
W̃k−1). We take

Ŵ = W \ W̃k (9)

to be the data-dependent set of indices for which the null
hypothesis is violated.

For example, when we perform multiple testing for QTE het-
erogeneity, that is, when we identify for which subgroups z the
null hypothesis of constant treatment e!ects within subgroups
is violated (the last row in Table 1), we take

%(q̂#; Sw) = sup
(τ ,z)∈Sw

γ (q̂#; τ , z)

= sup
(τ ,z)∈Sw

∣∣q̂#(τ , z) − q̃#(z)
∣∣

and

%(q̂#∗
b − q̂#; Sw)

= sup
(τ ,z)∈Sw

∣∣q̂#∗
b (τ , z) − q̂#(τ , z) − (q̃#∗

b (z) − q̃#(z))
∣∣ ,

where

q̃#(z) = 1
τU − τL

∫ τU

τL
q̂#(τ , z)dτ , and q̃#∗

b (z) (10)

= 1
τU − τL

∫ τU

τL
q̂#∗

b (τ , z)dτ .

2.2.3. Asymptotic Control of FWER
In this subsection, we provide conditions that ensure the set
Ŵ in Equation (9) obtained through the step-down procedure
outlined in the prior subsection controls the FWER asymptot-
ically. For brevity, we focus on a situation where Zi = 1 for
all i = 1, . . . , n, allowing us to suppress the argument z from
qd(τ , z), q#

d (τ , z), and γ (q#; τ , z), writing them as qd(τ ), q#
d (τ ),

and γ (q#; τ ). We also take W = [τL, τU ]. For each τ ∈ [τL, τU ],
and d ∈ {0, 1}, we rewrite

q̂d(τ ) = arg min
q∈R

Q̂d(q; τ ),

where, for q ∈ R,

Q̂d(q; τ ) =
n∑

i=1

1{Di = d}
p̂d(Xi)

ρτ (Yi − q).
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We also de"ne its population analogue:
qd(τ ) = arg min

q∈R
E[Qd(q; τ )],

where

Qd(q; τ ) =
n∑

i=1

1{Di = d}
pd(Xi)

ρτ (Yi − q).

Throughout, we assume that the propensity score is parametri-
cally speci"ed as follows:

P{Di = 1|Xi = x} = G(x; β0),
where β0 is known to lie in a parameter space * ⊂ Rdβ . Let β̂

be the estimator of β0 , so that we take
p̂d(x) = G(x; β̂)d(1 − G(x; β̂))1−d, d ∈ {0, 1}.

Note that the approach of weighting using the inverse propen-
sity score estimated nonparametrically creates what Khan and
Tamer (2010) called the issue of irregular identi"cation, and
"nite sample inference may be unstable without proper trim-
ming combined with assumptions on the tail behavior of the
propensity scores. We do not address the issue of trimming
because we use a parametric speci"cation of propensity scores.
Interested readers can see Ma and Wang (2020) and references
therein for proposals on the choice of trimming parameters.
The extent of misspeci"cation in the parametric propensity
score model determines whether the pseudo true QTE process
that is our object of interest is a meaningful approximation to
the true unknown QTE process. With a parametric propensity
score both the conditional feature being studied and estimation
method used determine the quality of this approximation, an
issue we consider in our application in Section 3.2.

We next introduce the bootstrap estimator β̂∗ that is con-
structed in the same manner as β̂ , with the exception that we
use the bootstrap sample (Y∗

i , X∗
i , D∗

i )
n
i=1 (i.e., the iid draws

from the empirical distribution of (Yi, Xi, Di)n
i=1) in place of the

original sample (Yi, Xi, Di)n
i=1. Let Fn be the σ -"eld generated

by (Yi, Xi, Di)n
i=1. For a matrix A, we de"ne ||A|| = √

tr(A′A).
We let

Vi = (Yi, X′
i , Di)

′, and V∗
i = (Y∗

i , X∗′
i , D∗

i )
′.

As for the estimators β̂ and β̂∗, we make the following assump-
tion. (In the assumption and any statements involving bootstrap
quantities below, the notation oP(1) refers to a term that con-
verges to zero in probability, where the probability simultane-
ously involves both the randomness of the data and that of the
bootstrap samples.)

Assumption 2.2. There exists a map ψ such that the following
two statements hold.

(i)

√
n(β̂ − β0) = 1√

n

n∑

i=1
(ψ(Vi) − Eψ(Vi)) + oP(1),

where ||var(ψ(Vi))|| < ∞.
(ii)

√
n(β̂∗ − β̂) = 1√

n

n∑

i=1
(ψ(V∗

i ) − E[ψ(V∗
i )|Fn]) + oP(1).

This assumption is typically satis"ed by most
√

n-consistent
and asymptotically normal estimators β̂ .

Let G(1)
k (x; β) = ∂G(x; β)/∂βk, and for d ∈ {0, 1},

gd,k(x; β) =
(

G(1)
k (x; β)

)d (
−G(1)

k (x; β)
)1−d

,

and gd(x; β) = [gd,1(x; β), . . . , gd,dβ (x; β)]′. Let g(1)
d (x; β) =

∂gd(x; β)/∂β ′. We list regularity conditions for gd(x; β) and the
distribution of Ydi below.

Assumption 2.3. (i) The parameter space * for β0 is bounded in
Rdβ and

sup
x∈X

sup
β∈*

(∥∥gd(x; β)
∥∥ + ||g(1)

d (x; β)||
)

< ∞.

(ii) The set Jd(τU , τL) ≡ {qd(τ ) : τ ∈ [τL, τU ]} is bounded
for each d ∈ {0, 1}.

(iii) The density fd of Ydi is continuous on a closed inter-
val containing Jd(τU , τL) and bounded away from zero on
Jd(τU , τL).

Let us introduce a condition for the functional γ (·; τ ) as
follows.

Assumption 2.4. {γ (·; τ ) : τ ∈ [τL, τU ]} are convex, non-
negative, equicontinuous functionals on the space of bounded
functions endowed with the sup norm.

The condition is a mild, technical condition for the function-
als γ that are permitted in our framework. All the examples we
consider in this article satisfy this condition.

De"ne WP =
{
τ ∈ [τL, τU ] : γ (q#(τ ); τ ) &= 0

}
and let Ŵ

be the set constructed using the step-down procedure explained
above. Then let FWER = P{Ŵ &⊂ WP}.

Theorem 2.1. Suppose that Assumptions 2.1–2.4 hold. Then,
lim sup

n→∞
FWER ≤ α.

The condition on the functionals γ (·; τ ) is satis"ed by each
example listed in Table 1. Online Appendix B presents the
complete proof of Theorem 2.1 that involves several steps.
Brie%y, we "rst obtain the asymptotic linear representation of√

n(q̂#(τ ) − q#(τ )) that is uniform over τ ∈ [τL, τU ], using
Pollard’s convexity lemma; similarly as in Hahn (1995) and
Kato (2009). We next use the maximal inequality in Massart
(2007) as in Guerre and Sabbah (2012) to additionally establish
the asymptotic equicontinuity of the leading process in the
asymptotic linear representation, and its weak convergence to
a tight Gaussian process indexed by τ ∈ [τL, τU ]. While the
econometric literature focuses mostly on quantile regression
models, modi"cations to the standard arguments are needed
in our set-up because we estimate a parametric speci"cation of
propensity scores in the "rst step. With these results and using
the assumption that γ is a continuous functional, we verify that
the conditions of Theorem 2.1 of Romano and Shaikh (2010)
are satis"ed, thereby obtaining the desired result of asymptotic
FWER control. In summary, Theorem 2.1 provides the asymp-
totic validity of our proposed bootstrap-based multiple testing
procedures for QTE heterogeneity under the assumption of
selection on observables.
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2.3. Practical Implementation

In this subsection, we provide a brief guide on how to implement
our proposed testing procedures. MATLAB and Stata code that
implement the tests are available from the authors.
1. Estimate the propensity score of treatment status on observed

covariates with the full sample. Following Firpo (2007) and
Equation (8), estimate the QTE q̂#(τ , z) for quantiles and
subgroups of interest. In practice, researchers bin quantiles,
for example, into deciles or percentiles, so here we switch
from a continuum of quantiles to a discrete set T . Instead of
subgroups, one may include the full sample by setting Zi = 1
if the full sample is the focus.

2. Using each bootstrap sample (Y∗
i,b, D∗

i,b, X∗
i,b), b = 1, . . . , B,

construct q̂#∗
b (τ , z), b = 1, . . . , B. These quantities are used

to calculate bootstrap critical values in the construction of
pointwise con"dence intervals, uniform con"dence intervals
and the testing procedures as explained below.

3. To construct a (1−α)×100% point-wise con"dence interval
for q#(τ , z), we "rst obtain the (1 − α) percentile of the
bootstrap distribution of

{√
n

∣∣q̂#∗
b (τ , z) − q̂#(τ , z)

∣∣ : b = 1, . . . , B
}

,
and denote the percentile to be c1−α(τ , z). Then the point-
wise bootstrap con"dence interval is given by

[
q̂#(τ , z) − c1−α(τ , z)√

n
, q̂#(τ , z) + c1−α(τ , z)√

n

]
. (11)

4. To test a joint hypothesis, construct a test statistic and a
bootstrap critical value as follows. For example, consider the
following hypothesis to test for positive QTE, which corre-
sponds to the second row of Table 1:

H0 : q#(τ , z) ≤ 0 for all (τ , z) ∈ T × Z vs.
H1 : q#(τ , z) > 0 for some (τ , z) ∈ T × Z . (H.1)

We calculate the test statistic and its bootstrap counterpart as
follows:

T = max
(τ ,z)∈T ×Z

max{q̂#(τ , z), 0}, and

T∗
b = max

(τ ,z)∈T ×Z
max{q̂#∗

b (τ , z) − q̂#(τ , z), 0}, b = 1, . . . , B.

The test statistic T is compared to a bootstrap critical value
which is the 1 − α quantile of {T∗

b : b = 1, . . . , B}. Because
a discrete number of quantiles are evaluated in empirical
applications, we replace the supremum with the maximum.

As another example that corresponds to the third row of
Table 1, consider the following hypothesis to test for treat-
ment e!ect heterogeneity across quantiles within a subgroup:

H0 : q#(τ , z) = q̄#(z) for all τ ∈ T and some z ∈ Z , vs
H1 : q#(τ , z) &= q̄#(z) for some τ ∈ T and all z ∈ Z .

(H.2)
The test statistic and its bootstrap counterpart are calculated
as follows:

T = max
(τ ,z)∈T ×Z

|q̂#(τ , z) − q̃#(z)|, and

T∗
b = max

(τ ,z)∈T ×Z

∣∣q̂#∗
b (τ , z) − q̃#∗

b (z)

−
(
q̂#(τ , z) − q̃#(z)

)∣∣ , b = 1, . . . , B,

where q̃#(z) and q̃#∗
b (z) are as de"ned in Equation (10).

(Note that we replace the integral in q̃#(z) by the mean of
{q̂#(τ , z) : τ ∈ T }, and similarly with q̃#∗

b (z).) The bootstrap
critical values can be computed from {T∗

b : b = 1, . . . , B} as
before.

5. In the multiple testing procedure, we construct test statistics
and bootstrap critical values at each step in the step-down
procedure. For example, consider using the procedure to
report the quantile-subgroup pairs for which a policy has a
positive impact. First, we consider the following individual
hypotheses:

H0,(τ ,z) : q#(τ , z) ≤ 0, vs
H1,(τ ,z) : q#(τ , z) > 0, (H.3)

for each (τ , z). To apply the step-down procedure to "nd
pairs (τ , z) at which the null hypothesis in Equation (H.3)
is violated, we use the test statistic and the bootstrap test
statistics for each set W′ ⊂ T × Z ,
T(τ , z) = max{q̂#(τ , z), 0}, and

T∗
b (W′) = max

(τ ,z)∈W′
max{q̂#∗

b (τ , z) − q̂#(τ , z), 0}, b = 1, . . . , B.

Let ĉ1−α(W′) be the bootstrap critical value of {T∗
b (W′) :

b = 1, . . . , B}. We begin with W̃1 = T × Z , and following
Section 2.2.2, the iterative procedure is repeated until at step
k ≥ 2,

W̃k =
{
(τ , z) ∈ T × Z : T(τ , z) ≤ ĉ1−α(W̃k−1)

}
, (12)

and eventually W̃k = W̃k−1, indicating that no further
element of W̃k can be eliminated. The set of pairs (τ , z)
removed from the set W1 and not in W̃k are those where the
null hypothesis H0,(τ ,z) is violated.

Similarly, researchers can use a multiple testing procedure
to identify the subgroups in which QTE are heterogeneous
across quantiles. As in the last row of Table 1, consider

H0,z : q#(τ , z) = q̄#(z) for all τ ∈ T , vs
H1,z : q#(τ , z) &= q̄#(z) for some τ ∈ T . (H.4)

To test (H.4), we construct the test statistic and the bootstrap
test statistic

T(z) = max
τ∈T

|q̂#(τ , z) − q̃#(z)|, and

T∗
b (W′) = max

z∈W′
max
τ∈T

∣∣q̂#∗(τ , z) − q̃#∗(z)

−
(
q̂#(τ , z) − q̃#(z)

)∣∣ , b = 1, . . . , B,
and undertake the step-down procedure as in Equation (12).

When testing Equation (H.3) or (H.4), the step-down
procedure yields quantile-subgroup pairs or subgroups at
which the hypothesis is rejected at a level α, but researchers
may also be interested in p-values. To obtain p-values, we "rst
rerun the step-down procedure for di!erent values of α on a
grid. Then, for each quantile-subgroup pair or subgroup, the
p-value is the value of α such that we reject the null hypothesis
at that value but fail to reject it at the next lower value on the
grid of αs.
The above procedures can be used to conduct a wide vari-

ety of tests for empirical applications. In the next section, we
demonstrate the value of these tests by revisiting Andrabi, Das,
and Khwaja (2017).
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3. Empirical Application

3.1. Experimental Design and Data

Andrabi, Das, and Khwaja (2017) conducted an experiment in
112 Pakistani villages located in three districts in Pakistan’s most
populous province, Punjab, to study the impact of providing
parents with a detailed two-page report card on their child’s
own and school-level performance on a variety of outcomes.
Each report card contained the student’s test score and quintile
rank (compared to all tested students) in three subject areas
and, for all of the schools in the village, presented information
on the average score, number of children tested, and quintile
rank (across all schools tested in the sample). In accountability
systems, such school level report cards are frequently postulated
to lead to improved parental investment decisions in education.
The treatment exogenously increased information in 56 of the
112 villages, and Andrabi, Das, and Khwaja (2017) argued that
each village can be viewed as an island economy where private
and public schools compete.

The focus of Andrabi, Das, and Khwaja (2017) was to exam-
ine the gradient in the estimated causal parameter of providing
a report card along both the school type and baseline test
score distributions. It is important to stress that the institu-
tional structure of education in Pakistan o!ers several unique
advantages that Andrabi, Das, and Khwaja (2017) exploited to
facilitate their study of how competition a!ects equilibrium
school and student outcomes at the market level. Rural villages
in Pakistan are typically located at a great distance from each
other or are separated by natural barriers. Carneiro, Das, and
Reis (2013) found that parents of children in primary school
in Pakistan o#en make enrollment decisions that places great
weight on the physical distance from home to school. Second,
within each village there are multiple a!ordable private schools,
and an estimated 35% of all students were enrolled in private
schools in 2005. Third, school inputs such as teacher education
di!er sharply between government and private school and many
private schools have a secular orientation. There are very few
if any regulations on the private schools that are generally not
supported by the government.

The idea that the gradient in the e!ect of increased infor-
mation from the report card will di!er between public and
private schools is consistent with predictions from models of
optimal pricing and quality choices in markets with asymmetric
information (e.g., Shapiro 1983; Wolinsky 1983; Milgrom and
Roberts 1986). These models predict heterogeneous responses
from improved information. The quality of initially low per-
forming schools as measured by student test scores will increase
at a larger rate than responses in initially high-quality schools;
and under some assumptions on parental demand for school
quality the responses in high quality schools may even be nega-
tive. More recently, Camargo et al. (2014) developed a reduced-
form version of a dynamic model of managerial e!ort along the
lines of Holmström (1999) to show how test score disclosure
would lead to heterogeneous changes in subsequent student test
score performance between public and private schools.

Taken together, these economic models predict students
and parents responding to information on school quality and
their relative rank within a school, with heterogeneity predict-
ing larger behavioral responses to receiving a (more) negative

signal. The extent of this heterogeneity can vary across sub-
groups de"ned by school type, because administrators in private
schools may face greater pressure than public school counter-
parts and provide a larger response to having negative infor-
mation being disclosed. Thus, the general shape of treatment
e!ect heterogeneity and the resulting QTE could be shi#ed
to the le# or right, be compressed or stretched, or otherwise
be transformed across subgroups without losing their overall
shape. In summary, economic theory predicts treatment e!ect
heterogeneity both within and between subgroups, motivating
the development of tools to assess its extent in general, as well as
in the speci"c context of the Andrabi, Das, and Khwaja (2017)
information provision experiment.

Last, beyond the advantages of the institutional structure,
Andrabi, Das, and Khwaja (2017) distinguishes itself from the
growing body of work evaluating randomized interventions in
developing countries by having collected rich longitudinal data.
Beginning in 2004, approximately 12,000 grade 3 students were
surveyed. The follow-up rate was over 96% in subsequent years.
Schools also completed annual surveys providing rich infor-
mation on their operations as well as their inputs. A subset of
households were also randomly selected for parents to provide
additional information on home inputs. In our study, to facilitate
comparisons we use the same control variables as Andrabi, Das,
and Khwaja (2017) and use a standardized grade 4 test score as
our primary outcome variable to fully explore treatment e!ect
heterogeneity.

Table 2 presents child-level summary statistics by treatment
status for our outcome and subgroup variables. Our outcome
variable, “Average test score, round 2,” is signi"cantly higher
among children in the treated group (whose parents received
the school report cards), which is consistent with the "ndings
in Andrabi, Das, and Khwaja (2017). However, the di!erence
is about a third as large as the village-level treatment e!ect
reported by Andrabi, Das, and Khwaja (2017), which is due to
the fact that the authors do not weigh by the number of children
in each village. The village-level variables including literacy rate,
number of households, school Her"ndahl index, and average
wealth di!er signi"cantly between treatment and control group.
Recall that randomization occurred at the village level and not
at the child level, and these signi"cant di!erences disappear in
village-level comparisons. We also "nd signi"cant di!erences in
the fraction of government schools, high-scoring schools, and
fathers with above-middle school education by treatment status.
However, our testing approach incorporates propensity score
weighting, which allows us to balance treatment and control
group based on these observed variables.

3.2. Results

In this section, we obtain new insights extending the "ndings
of Andrabi, Das, and Khwaja (2017) by conducting hypothesis
tests based on the framework described in Section 2. As with any
analysis based on a "eld experiment, the external validity of our
"ndings is limited, and our results are not intended to generalize
to distributional treatment e!ects of school report cards in other
contexts. Our analysis focuses on the average of standardized
test scores across three subjects a#er random assignment as our
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Table 2. Child-level summary statistics.

No report card Report card Di!erence
Mean/Std.dev./N Mean/std.dev./N p-value

Average test score,
round 1

−0.0134 −0.0229 0.569

(0.942) (0.886)
5786 6324

Average test score,
round 2

0.186 0.229 0.012

(1.004) (0.943)
6266 6538

Female child 0.425 0.431 0.438
(0.494) (0.495)

8443 8760
Child’s age 9.680 9.671 0.702

(1.505) (1.446)
6616 7117

Village literacy rate 38.46 36.26 0.000
(12.88) (10.63)

8443 8760
Number of households
in village

708.3 797.3 0.000

(375.8) (591.0)
8443 8760

School Her"ndahl
Index

0.181 0.183 0.092

(0.0680) (0.0676)
8443 8760

Village wealth (median
monthly expenditure)

4498.5 4638.6 0.000

(1649.4) (1454.8)
8443 8760

Government school
(excluded category:
private)

0.675 0.698 0.003

(0.468) (0.459)
6617 7118

School size 251.6 248.7 0.386
(199.5) (194.9)
6617 7118

High scoring school
(above 60th
percentile)

0.499 0.486 0.096

(0.500) (0.500)
8443 8760

Mother’s education
above middle school

0.325 0.333 0.498

(0.469) (0.471)
3097 3278

Father’s education
above middle school

0.630 0.590 0.001

(0.483) (0.492)
3090 3278

Source: Andrabi, Das, and Khwaja (2017).
NOTE: Means, standard deviations (in parentheses), and numbers of observations
for children in villages that did not and did receive the information experiment
treatment. p-values for the t-test of the null hypothesis that the means do not
di!er between treatment and control group.

outcome variable, and we estimate QTE of access to report cards
for percentiles 1–99 using the Firpo (2007) estimator. For the
results that follow, we set the level of each test to α = 0.05. All
test results are based on bootstrapping with B = 2,999.

To balance covariates between the treatment and control
groups, we estimate the propensity score p̂d(x) using a para-
metric logit speci"cation, but due to random assignment of
the treatment, our results are unlikely to be sensitive to the
chosen speci"cation. This increases our con"dence that our
object of interest, the pseudo true QTE process, is a meaningful
approximation to the true unknown QTE process. We include
district "xed e!ects, and village wealth, literary rate, school

Figure 1. QTE and multiple testing results, no subgroups.
NOTE: Multiple testing results show quantiles for which the QTE is positive at an
FWER of 5% (see hypothesis (H.3) in Section 2.3).

Her"ndahl index, and number of households when estimating
the propensity score.

Andrabi, Das, and Khwaja (2017) used strati"ed random-
ization of villages (half the villages in each district are treated)
and include district "xed e!ects to account for strati"cation. For
statistical inference, the authors account for clustering within
village. In contrast, we draw bootstrap samples of individuals
instead of using the block bootstrap to resample villages. Thus,
because strati"cation reduces sampling error, and not account-
ing for clustering leads to an underestimation of standard errors,
it is unclear whether our con"dence intervals are too conserva-
tive or too wide. We conclude Section 3.2.1 by contrasting our
main results to ones using the block bootstrap to account for
clustering by village.

To infer treatment e!ects for speci"c individuals from QTE
we have to assume that there are no rank reversals in the test
score distribution between the treatment and control groups.
All studies estimating distributional treatment e!ects have to
make this assumption, but it not possible to directly test for
rank invariance. Bitler, Gelbach, and Hoynes (2008) developed
a test that provides evidence for rank reversals using the distri-
butions of observable characteristics of treatment and control
group. They "nd only small deviations from rank preservation
for the Self-Su$ciency Project. Djebbari and Smith (2008) and
Kottelenberg and Lehrer (2017) used this test in di!erent appli-
cations and also "nd only minor evidence of rank reversals.
Irrespective of whether the no-rank-reversal assumption holds,
positive QTE imply that the treatment has a positive e!ect for
some interval of the test score distribution.

3.2.1. Results for the Full Sample
First, we consider QTE for the entire sample, that is, we set
Zi = 1 in the notation of Section 2. Note that QTE relate
to the unconditional distribution of round 2 test scores and
are unrelated to treatment e!ects conditional on baseline test
scores. Figure 1 shows our estimated QTE for the full sample
along with 90% point-wise con"dence intervals. We present 90%
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Table 3. Testing for the presence of positive QTE and QTE heterogeneity without
subgroups.

Test statistic Critical value at 5% p-value

Test for positive QTE (H.1) 0.387 0.227 0.00333
Test for QTE heterogeneity (H.2) 0.329 0.238 0.013

NOTE: This table shows test results for the hypotheses that there is no positive
treatment e!ect for all quantiles and that the treatment e!ect is the same for all
quantiles, respectively, that is, we test hypotheses (H.1) and (H.2) in Section 2.3,
setting Zi = 1.

con"dence intervals to make them comparable to the multiple
testing results, which are obtained from one-sided tests that
control the FWER at 5%. The point-wise con"dence intervals
are calculated according to (11) in Section 2.3. We "nd point-
wise signi"cant and positive QTE extending from the 1st to the
21st, the 24th to 29th, and the 31st to 47th percentiles. From
the 82nd to the 99th percentile the point estimates for QTE are
negative but the point-wise con"dence intervals include zero.

Table 3 summarizes the results for joint hypothesis testing
for positive and heterogeneous QTE. First, we test the null
hypothesis of no positive treatment e!ect at any percentile, that
is, hypothesis (H.1) in Section 2.3, setting Zi = 1. As shown in
Figure 1, the largest QTE (which occurs at the second percentile)
equals 0.387. With a bootstrap critical value of 0.227, we reject
the null hypothesis at the 5% level. The associated p-value equals
0.003. Thus, there is clear evidence that the information provi-
sion had the desired e!ect of increasing student performance
for at least some individuals. Next, we present results from the
test of no treatment e!ect heterogeneity across quantiles, that
is, hypothesis (H.2), setting Zi = 1. The test statistic, which is
calculated as the largest deviation from the mean estimated QTE
(q̃# = 0.0583), equals 0.329. With a bootstrap critical value of
0.238, we also reject this null hypothesis at 5% with a p-value of
0.013. This result implies that individuals vary in their response
to the report cards.

Having rejected the null hypothesis of no treatment e!ect
heterogeneity, we now identify the range of the test score dis-
tribution where positive treatment e!ects are located, that is, we
test hypothesis (H.3), setting Zi = 1. The shaded area in Figure 1
corresponds to the set Ŵ = W \ W̃k. This test accounts for
potential dependencies across quantiles of the same outcome
variable and the number of individual hypotheses (99 in this
case). Examining Figure 1 we observe that the set of signi"cantly
positive QTE supports the distributional e!ects predicted by the
underlying theory. However, we "nd that individuals located
above the 19th percentile of the test score distribution do not
exhibit signi"cant QTE once we adjust for multiple testing. The
smallest and largest quantiles at which QTE are signi"cantly
positive correspond to gains of 0.088 and 0.387, respectively,
at the 19th and 2nd percentiles. Of the percentiles with point-
wise signi"cant QTE, 37% remain signi"cant when applying
our multiple testing procedure. Hence, we can conclude that
the bene"ts of this particular form of accountability are more
con"ned than one would otherwise "nd based on traditional
statistical inference that ignores potential dependencies and
testing at multiple percentiles. We "nd that there is a more
limited range of individuals whose academic outcomes truly
increase when their parents receive a school report card.

Figure 2. QTE and multiple testing results with an FWER of 0.1, no subgroups.
NOTE: Multiple testing results show quantiles for which the QTE is positive at an
FWER of 10% (see hypothesis (H.3) in Section 2.3).

We conclude this section by presenting results that account
for clustering by village using the block bootstrap. As noted in
Section 2.2.1, the block bootstrap can be used within our pro-
cedure to adjust for cluster dependence. Figure 2 conducts our
step-down procedure with an FWER of 0.1 instead of 0.05, both
with (top panel) and without (bottom panel) clustering by vil-
lage because this is the level at which Andrabi, Das, and Khwaja
(2017) randomly assigned treatment. For consistency, the point-
wise con"dence intervals are at the 80% level. The results with-
out clustering correspond to those presented without subgroups
in Figure 1 that used an FWER of 0.05. By increasing the level
of the FWER, we "nd that the null hypothesis can now also be
rejected in favor of the alternative at the 20th, 21st, 24th to 27th,
and 38th percentiles. Yet, the statistical signi"cance for each
of these QTEs disappears when we adjust for clustering. Not
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surprisingly, accounting for clustering leads to wider point-wise
con"dence intervals and just two of the QTE remain statistically
signi"cant. If evaluated independently and without multiple
testing corrections, four times as many QTE would be found to
be statistically signi"cant with adjustments for clustering (see
point-wise con"dence intervals in Figure 2(a)). This reinforces
our main "nding that these corrections are necessary to prevent
an in%ation of false positive conclusions.

3.2.2. Results by Subgroup
Next, we present results incorporating subgroups. Economic
theory predicts that individuals with di!erent observed char-
acteristics may react di!erently to the same set of information.
In particular, individual and village characteristics may deter-
mine for which range of the test score distribution we observe
an increase or decrease in test score performance. Follow-
ing Andrabi, Das, and Khwaja (2017), we consider subgroups
de"ned by child characteristics, type of school, and character-
istics of the villages. The research questions we consider are
speci"c to a category of subgroups. For example, we ask whether
treatment e!ects are constant across percentiles of the test score
distribution and children’s gender. We do not generally conduct
multiple testing across di!erent categories of subgroups. How-
ever, our methodology would accommodate such a setting, and
we do obtain multiple testing results for subgroups de"ned by
school ownership and quality.

Figure 3 presents QTE conditional on child gender and child
baseline test scores. These "gures provide an easy and intuitive
way to check which subgroups bene"t from being assigned to
receive report cards (heterogeneity across subgroups). In addi-
tion, we can inspect the "gure for each subgroup to determine
the portion of the student test score distribution in which indi-
viduals exhibit positive subgroup-speci"c QTE (heterogeneity
within subgroup). Shaded areas continue to denote signi"cant
QTE based on our multiple testing procedure of testing hypoth-
esis (H.3).

Figure 3(a) presents QTE by child gender. The e!ect of the
access to report cards on test scores is larger for girls throughout
the test score distribution. For boys, there is no statistically
signi"cant positive e!ect above the 12th percentile (based on the
point-wise con"dence intervals). When adjusting inference for
multiple testing, we "nd signi"cant e!ects among girls in the 1st
to 5th percentile and boys in the 2nd to 4th percentile.

The second panel of Figure 3 considers subgroups de"ned
by whether the child’s baseline test score was above or below
the median. The estimated QTE and point-wise con"dence
intervals in Figure 3(b) show that it is mostly children with a
below-median baseline test score who bene"t from the report
card experiment. When we adjust inference for multiple testing,
however, only children in the very top percentile of the post-
experiment test score distribution who scored below the median
at baseline exhibit signi"cantly positive QTE. In addition, chil-
dren who scored above the median at baseline and whose post-
experiment score falls in the "rst percentile also see a signi"cant
e!ect of information provision. This "nding suggests that the
children who scored below the median at baseline but are in
the top percentile at follow-up are those who realized the largest
improvement in test scores and thereby bene"ted the most from
the information provision.

Next, we construct subgroups based on village characteris-
tics. Figure 4 shows the estimated subgroup-speci"c QTE and
multiple testing results. We "nd signi"cant treatment e!ects
predominantly for children in villages with below-median
wealth, above-median literacy rates, below-median school con-
centration as proxied by the school Her"ndahl Index, and
above-median size. From a policy perspective, it is may be
important to know that report cards improve children’s test
scores in relatively poor villages. At the same time, providing
written report cards to parents may obviously not be a suc-
cessful strategy in villages with low literacy rates. In general,
these results can show policymakers which subgroups should
be targeted with an accountability program. As with the results
for the full sample, we only "nd statistically signi"cant e!ects
in the bottom part of the test score distribution for each of sub-
groups considered, except for the subgroup of low-performing
students shown in Figure 3(b). This "nding is not surprising
because low-performing students tend to bene"t from many
school interventions that do not change a speci"c education
input, including early childhood education interventions (see,
e.g., Bitler, Hoynes, and Domina 2014; Kottelenberg and Lehrer
2017, for evidence using the United States and Canadian data,
respectively).

Finally, we consider subgroups de"ned by the combination of
school ownership type (government or private) with one of two
di!erent measures of student performance (school level and rel-
ative). We "rst create subgroups by interacting school ownership
with school performance in the baseline test to yield four sub-
groups. Speci"cally, following Andrabi, Das, and Khwaja (2017),
a school is de"ned as high-performing if its mean baseline test
score exceeds the 60th percentile of all schools’ mean scores.
Figure 5 illustrates the estimation and multiple testing results.
We "nd that signi"cantly positive QTE are concentrated among
low-scoring children in relatively high-performing government
schools and high-scoring children in low-performing private
schools. Moreover, consistent with the negative average treat-
ment e!ect reported in Andrabi, Das, and Khwaja (2017), we do
not "nd any positive e!ects among children in high-performing
private schools.

The second student performance measure we consider per-
tains to the child’s performance at the baseline test relative
to his or her school’s performance. Speci"cally, we construct
subgroups by dividing the sample into groups de"ned by the
combination of school ownership and whether the child per-
formed above or below the median test score of their respective
school at baseline (high and low achieving students, respec-
tively). (Table VII in the online Appendix III of Andrabi,
Das, and Khwaja (2017) showed average treatment e!ects by
children’s baseline performance relative to their school.) Fig-
ure 6 shows that children in government schools only bene"t
from the report cards if they are located in the bottom of
the test score distribution irrespective of whether they scored
above or below the median of their school’s test score at
baseline. In addition, the QTE are signi"cantly positive under
corrections for multiple testing among children who score
above the 90th percentile and are enrolled in a private school
where they scored below the within school median at base-
line. The latter "nding is consistent with the observed pattern
in Figure 3(b).
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Figure 3. QTE and multiple testing results, by child characteristics.
NOTE: Multiple testing results show quantiles for which the QTE is positive at an FWER of 5% (see hypothesis (H.3) in Section 2.3).

Taken together, our results in Figures 5 and 6 provide addi-
tional nuance to the "ndings of Andrabi, Das, and Khwaja
(2017) related to which students in which schools gain from
access to report cards. Bitler, Gelbach, and Hoynes (2006) moti-
vate the valuable additional policy insights provided by distribu-
tional e!ects as showing what mean estimates can miss. In Fig-
ure 5, our evidence of treatment e!ect heterogeneity is masked
if one estimates average treatment e!ects even conditional on
school type and performance. Further, in Figure 6, while the

main result is consistent with Andrabi, Das, and Khwaja (2017)
who found that low achieving students bene"t from the report
card intervention more than high achieving students, we pro-
vide additional insights by showing that this bene"t is con"ned
to the top decile among low achieving students.

We now formally test for treatment e!ect heterogeneity
between and within subgroups. Table 4 presents the results
for testing hypothesis (H.2). This null hypothesis posits that
there are no di!erences across subgroups that can explain the
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Figure 4. QTE and multiple testing results by village characteristics.

observed heterogeneity of QTE in the full sample. We can reject
the hypothesis for all sets of subgroups at a level of 5%, except for
the subgroup category “School type and school performance.”
We conclude that di!erences across subgroups do not explain
the observed distributional treatment e!ects in the whole
sample.

The test results shown in Table 5 additionally account for
potential dependencies within and across subgroups. These
test results provide additional insight because they identify the
individual subgroups within a class of subgroups that exhibit

treatment e!ect heterogeneity. That is, we test hypothesis (H.4).
In these results, a p-value below 0.05 indicates that the corre-
sponding subgroup exhibits a statistically signi"cant amount of
treatment e!ect heterogeneity across the test score distribution.
In most subgroup categories we "nd evidence of treatment e!ect
heterogeneity for at least one of the subgroups. Exceptions are
the subgroup categories “School type and school performance”
and “School type and child’s performance relative to school”
where we cannot reject the null hypothesis for any subgroup
at an FWER of 5%. These results clearly suggest a substantial
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Figure 4. QTE and multiple testing results by village characteristics (continued).
NOTE: Multiple testing results show quantiles for which the QTE is positive at an FWER of 5% (see hypothesis (H.3) in Section 2.3).

amount of treatment e!ect heterogeneity between subgroups
and across the student performance distribution within sub-
groups.

4. Conclusion

In this article we introduce general tests for treatment e!ect
heterogeneity in settings with selection on observables. These
tests are motivated by empirical practice in settings with many
covariates requiring researchers to use a parametric speci"ca-
tion for the propensity score. The results of the proposed tests

allow researchers to provide policymakers with guidance on
complex patterns of treatment e!ect heterogeneity both within
and across subgroups. In the present context, the results can
guide policymakers in adjusting how information on student
performance is provided, for example by introducing more (or
di!erent) conditions across villages. We establish the asymptotic
validity of this bootstrap multiple testing procedure for QTE. In
contrast to much of the existing literature on procedures to test
for heterogeneous treatment e!ects, these tests make corrections
for multiple testing and therefore provide valid inference under
dependence between subgroups and quantiles.
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Figure 5. QTE and multiple testing results by school type and performance.
NOTE: Multiple testing results show quantiles for which the QTE is positive at an FWER of 5% (see hypothesis (H.3) in Section 2.3).

Figure 6. QTE and multiple testing results by school type and the child’s performance relative to school performance.
NOTE: Multiple testing results show quantiles for which the QTE is positive at an FWER of 5% (see hypothesis (H.3) in Section 2.3).

Table 4. Testing for treatment e!ect heterogeneity between subgroups.

Subgroup category Test statistic p-value

Child’s gender 0.45 0.01
Child’s baseline test score 0.535 0.019
Village wealth 0.702 0
Village literacy rate 0.555 0
School Her"ndahl Index 0.494 0.018
Village size 0.495 0.00701
School type and school performance 1.27 0.0981
School type and child’s performance relative to school 1.57 0.002

NOTE: This table shows test results that indicate for which subgroups categories
we can reject treatment e!ects that are homogenous within subgroups for all
subgroups, that is, we test hypothesis (H.2) in Section 2.3.

Using data from Andrabi, Das, and Khwaja (2017), we
not only present evidence of considerable heterogeneity of
the e!ects of access to report cards on student achievement
for most subgroups, but demonstrate in which subgroups and
which test score quantiles within subgroups the bene"ts of
information provision are largest. In addition, our empirical
analysis emphasizes the importance of correcting for multiple
testing. Testing across di!erent subgroups is policy relevant,
and while Crump et al. (2008) provided an approach to select
which subpopulations to study, our tests go further by consid-
ering treatment e!ect heterogeneity conditional on observable
characteristics.
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Table 5. Testing which subgroups exhibit treatment e!ect heterogeneity.

Subgroup category Test statistic p-value

Child’s gender
Female 0.45 0.01
Male 0.304 0.092
Child’s baseline test score
Above median 0.535 0.019
Below median 0.51 0.019
Village wealth
Above median 0.208 1
Below median 0.702 0
Village literacy rate
Above median 0.555 0
Below median 0.121 0.81
School Her"ndahl Index
Above median 0.215 1
Below median 0.494 0.018
Village size
Above median 0.495 0.008
Below median 0.158 0.482
School type and school performance
High scoring government 1.13 0.128
Low scoring government 0.237 0.307
High scoring private 0.233 0.33
Low scoring private 1.27 0.099
School type and child’s performance relative to school
Government/high achieving 0.834 0.176
Government/low achieving 0.261 0.375
Private/high achieving 0.0949 0.984
Private/low achieving 1.57 0.002

NOTE: This table shows results of tests for which subgroups in each subgroup
category we can reject homogenous treatment e!ects, that is, we test hypothesis
(H.4) in Section 2.3. p-values are calculated using a grid with step size 0.001.
Hence, an entry of zero indicates that the corresponding p-value is below 0.001.

Given the considerable attention policymakers pay to devel-
oping accountability programs worldwide, our results highlight
for which groups targeted information provision would likely
yield higher returns. Further, these returns should exceed pro-
grams that disclose school quality to parents of all students. That
said, education policymakers face additional challenge from
incorporating evidence of heterogeneous treatment e!ects into
the design of any policy that may lead to di!erent school choice.
While Pareto improvements in welfare can easily be achieved
in social and labor policy using ex-post targeted transfers,
the e!ectiveness of redistributing students across schools also
depends on the shape of how peer groups in%uence academic
outcomes (see, e.g., Ding and Lehrer 2007).

We conclude by emphasizing that our multiple testing
approach is generally applicable in various ways beyond what
this article demonstrated. First, the tests can be applied to situa-
tions with multiple treatments (e.g., List, Shaikh, and Xu 2019)
or could be extended to situations with selection on unobserv-
ables that explore if there is heterogeneity in marginal treat-
ment e!ects (e.g., Heckman and Vytlacil 2005; Brinch, Mogstad,
and Wiswall 2017). Second, instead of using inverse propensity
score weighting, we may directly use the conditional distribu-
tion functions or conditional quantile functions to identify the
treatment e!ects as proposed by Chernozhukov, Fernandez-Val,
and Melly (2013). Extending their proposal to multiple testing
procedures to test for treatment e!ect heterogeneity across the
distribution or quantile function with or without subgroups has
the potential to complement this article by expanding insights
in empirical microeconomic research.
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