Multiple Testing and the Distributional Effects of Accountability Incentives in Education*

Steven F. Lehrer†
Queen’s University
and NBER

R. Vincent Pohl‡
Mathematica

Kyungchul Song§
University of British Columbia

May 2020

Abstract

This paper proposes bootstrap-based multiple testing procedures for quantile treatment effect heterogeneity under the assumption of selection on observables, and shows its asymptotic validity. Our procedure can be used to detect the ranges of quantiles and subgroups exhibiting treatment effect heterogeneity. We apply the multiple testing procedures to data from a large-scale Pakistani school report card experiment, and uncover evidence of policy-relevant heterogeneous effects from information provision on child test scores. Further, our analysis reinforces the importance of preventing the inflation of false positive conclusions because 75 percent of statistically significant quantile treatment effects become insignificant once corrections for multiple testing are applied.

Keywords: Information; Student Performance; Accountability; Quantile Treatment Effects; Multiple Testing; Bootstrap Tests.

JEL classification: C12; C21; I21; L15.

*We thank Jonah Gelbach, Pat Kline, Jeff Smith, and seminar and conference participants at the University of Georgia, Hunter College, the University of North Carolina Greensboro, RWI, Sciences Po Paris, Tilburg University, AEA, CLSRN, ESAM, ESNASM, and SOLE/EALE for helpful comments and suggestions. Jacob Schwartz and Thor Watson provided excellent research assistance. Computer code used to generate all of the results in this paper are available in either Stata or Matlab on request. Lehrer and Song thank SSHRC for research support. All remaining errors are our own. An Online Appendix to this paper is available at https://rvpohl.github.io/files/LehrerPohlSong_Multiple_App.pdf.

†Economics Department, email: lehrers@queensu.ca.
‡Email: vincent.pohl@gmail.com.
§Vancouver School of Economics, email: kysong@mail.ubc.ca.
1 Introduction

Individuals differ not only in their characteristics but also in how they respond to a particular treatment or intervention. Therefore, treatment effects may vary between subgroups defined by individual characteristics such as gender or race. For example, programs that provide information on schools’ performance on standardized tests may lead to a different likelihood that parents “vote with their feet” and move their child to a better school based on parental characteristics such as education. In addition, individuals’ response to a particular treatment may vary across quantiles of the unconditional outcome distribution. After all, if a school information provision program improves the odds that a child’s performance relative to her peers can be correctly perceived by the parents, parental responses such as switching schools may vary with the child’s relative performance.

In an important paper, Bitler, Gelbach, and Hoynes (2006) show that data from an experimental evaluation of a welfare reform policy exhibit treatment effect heterogeneity as predicted by a labor supply model and that this pattern would be missed by reporting a mean treatment effect.\(^1\) To harness the potential policy benefits from treatment effect heterogeneity—ranging from personalized medicine to welfare reform parameters to customized marketing recommendations—requires an understanding whether the heterogeneous effects are spurious. A growing literature in econometrics has developed formal tests for treatment effect heterogeneity. For example, Koenker and Xiao (2002) proposed asymptotic inference on the quantile regression process, which can be applied to testing for quantile treatment effect (QTE) heterogeneity. In a similar framework, Chernozhukov and Fernández-Val (2005) proposed subsampling-based testing. Crump et al. (2008) developed a test for treatment effect heterogeneity using a nonparametric regression function approach under the selection on observables assumption. Recently, Ding and Miratrix (2016) and Chung and Olivares (2020) considered the approach of permutation tests for the distributional heterogeneity of treatment effects. Yet, these approaches are not frequently applied by empirical researchers who generally conduct statistical inference without also allowing for dependence across either subgroup or quantiles.\(^2\)

A multiple testing approach is useful in this context, as it provides a basis for judging the empirical relevance of treatment effect heterogeneity and sheds light on the pattern of

\(^1\)In a follow-up paper, Bitler, Gelbach, and Hoynes (2017) present evidence that the treatment effect heterogeneity exhibited in this experiment is not fully explained by between subgroup differences. Other papers that have significantly contributed to estimating heterogeneous treatment effects include Heckman, Smith, and Clements (1997); Friedlander and Robins (1997); Abadie (2002); Firpo (2007).

\(^2\)In Online Appendix A, we build on evidence from Fink, McConnell, and Vollmer (2014) who demonstrate the potential value for the testing strategy we propose in a variety of empirical applications.
treatment effect heterogeneity across different population groups. For example, policymakers can use the results to modify the design of accountability programs more effectively if they were to know which parents respond to market-level information on school quality. These parents may differ systematically by predetermined characteristics or by location between specific percentiles of their child’s test score distribution.

Given the widespread interest in treatment effect heterogeneity and the importance of multiple comparisons corrections, it is somewhat surprising that, to the best of our knowledge, there has been no research that formally establishes the asymptotic validity of a bootstrap multiple testing procedure for QTE under the assumption of selection on observables.\(^3\) The first contribution of this paper is to fill this gap by providing a formal result of asymptotic validity when the propensity scores are parametrically specified. We consider a parametric specification of propensity scores in this paper because, in many empirical applications, a parametric specification is used rather than a nonparametric specification. The latter specification seems to have attracted more attention from the literature of theoretical econometrics than applied research.

Our proposed multiple testing procedure can determine whether a treatment has a (positive) effect for any quantile and detect treatment effect heterogeneity across the outcome distribution and subgroups. Further, it can identify the subgroups and outcome quantiles for which the treatment effect is estimated to be conspicuous beyond sampling variations. Finally, it lets us determine which subgroups exhibit heterogeneous treatment effects. Our testing approach thus complements three recent papers including Lee and Shaikh (2014) who proposed a multiple testing procedure for subgroup treatment effects that controls the family-wise error rate (FWER), i.e. the probability of rejecting at least one true null hypothesis, in finite samples, and Bitler, Gelbach, and Hoynes (2017) who adopted a multiple testing procedure based on Bonferroni correction to test for treatment effect heterogeneity across subgroups and across time. Goldman and Kaplan (2018) subsequently developed a multiple testing procedure for quantiles at different distributions in two-sample Kolmogorov-Smirnov tests.

In an empirical application, we reexamine data from Andrabi, Das, and Khwaja’s (2017) Pakistani school report card field experiment and present evidence that correcting for multiple testing is empirically important and policy relevant. Specifically, 75 percent of the estimated statistically significant QTEs of information provision on children’s test scores be-

\(^3\)For example, Koenker and Xiao (2002), Chernozhukov and Fernández-Val (2005), Chernozhukov, Fernandez-Val, and Melly (2013), Lee and Shaikh (2014), Ding and Miratrix (2016) and Chung and Olivares (2020) did not consider the case of the inverse weighting by propensity scores. Crump et al. (2008) focused on testing for treatment effect heterogeneity for conditional treatment effects rather than QTE.
come insignificant once multiple testing corrections are applied. These findings also demonstrate that the significantly positive effects of providing information to parents reported in Andrabi, Das, and Khwaja (2017) are concentrated in the bottom quintile of the test score distribution. Further, we find clear evidence of treatment effect heterogeneity in the full sample and every subgroup that we consider. Taken together, our results shed new light on the effectiveness of accountability programs, further indicating how schools and parents respond to the release of information on student performance.

The empirical results of this paper contribute to a burgeoning empirical literature surveyed in Figlio and Loeb (2011) that explores how school accountability programs impact education outcomes. Economists have long argued that policies designed to increase competition in markets for education can improve educational outcomes by increasing disadvantaged students’ access to high quality schools, and by causing under-performing schools to become more effective or to shrink as families “vote with their feet” (Friedman, 1955; Becker, 1995; Hoxby, 2003). Further, by disclosing information about student and school performance, educators may change their effort because this affects the (implicit) market incentives faced by schools. Indeed, empirical evidence shows that providing information about school-level achievement directly to parents can influence school choice in the United States (Hastings and Weinstein, 2008), Canada (Friesen et al., 2012), the Netherlands (Koning and Van der Wiel, 2012), Brazil (Camargo et al., 2018), and Pakistan (Andrabi, Das, and Khwaja, 2017). However, school performance has also been found to not be the main determinant of choice and that preferences regarding schools are heterogeneous across socioeconomic groups in the United States (Hastings, Kane, and Staiger, 2009), Chile (Schneider, Elacqua, and Buckley, 2006), Pakistan (Carneiro, Das, and Reis, 2013), and the United Kingdom (Gibbons and Machin, 2006).

The rest of this paper is organized as follows: In Section 2, we introduce the general testing procedures for treatment effect heterogeneity across quantiles of the outcome distribution and subgroups. In Section 3, we illustrate the value of the testing procedure by reexamining the Andrabi, Das, and Khwaja (2017) experimental data. We describe the experiment and economic model that underlie the data being investigated. This model predicts heterogeneous treatment effects both within and across subgroups. The concluding Section 4 summarizes the contribution of using these testing approaches in empirical microeconomic research and discusses directions for future methodological work that can aid practitioners.

4The amount of parental response may depend on the type of information provided. Mizala and Urquiola (2013) provide evidence from Chile that when absolute measures of school achievement are already widely available, there are no changes in enrollment level and socioeconomic composition from receiving an additional highly publicized award.
2 Methodology

2.1 Testing for Treatment Effect Heterogeneity

To develop a multiple testing procedure for various hypotheses of QTEs, we consider the following data generating set-up. Let \(D_i \) be a random variable that takes values in \(\{0, 1\} \), where \(D_i = 1 \) indicates participation in the program by individual \(i \) and \(D_i = 0 \) being left in the control group. Let \(Y_i \) be the observed outcome of individual \(i \) defined as

\[
Y_i = Y_{1i} D_i + Y_{0i} (1 - D_i),
\]

where \(Y_{1i} \) denotes the potential outcome of individual \(i \) treated in the program and \(Y_{0i} \) that of the same individual not treated in the program. Let \(X_i \) be a vector of observed covariates of individual \(i \). The researcher observes a random sample of \((Y_i, D_i, X_i)_{i=1}^{n}\). We make the following standard assumptions of selection on observables and common support.

Assumption 2.1.

(i) \((Y_{1i}, Y_{0i})\) is conditionally independent of \(D_i \) given \(X_i \).

(ii) There exists \(\varepsilon > 0 \) such that for all \(x \in \mathcal{X} \) and \(d \in \{0, 1\}, \varepsilon \leq p_d(x) \leq 1 - \varepsilon \), where \(p_d(x) = P\{D_i = d | X_i = x\} \).

Further, we assume that \(X_i \) can be partitioned as \(X_i = (X_{1i}, Z_i) \), where \(Z_i \) is a discrete random subvector and \(X_{1i} \) indicates the vector that is not included in \(Z_i \). The subvector \(Z_i \) determines to which subgroup individual \(i \) belongs. For each \(z \) in the support of \(Z_i \), \(\tau \in (0, 1) \), and \(d \in \{0, 1\} \), we define

\[
q_d(\tau, z) = \inf \{ q \in \mathbb{R} : P\{Y_{di} \leq q | Z_i = z\} \geq \tau \}.
\]

Hence \(q_1(\tau, z) \) and \(q_0(\tau, z) \) are the quantiles of the outcome variable in the treatment and control groups conditional on subgroup \(z \). Note that we take \(\tau \) to run in a continuum. The subgroup QTE at a quantile-subgroup pair \((\tau, z)\) is then defined by

\[
\gamma(\tau, z) = q_1(\tau, z) - q_0(\tau, z).
\]

Let \(\tau_L, \tau_U \) be such that \(\tau_L < \tau_U \) and \(\tau_L, \tau_U \in (0, 1) \) and let \(\mathcal{Z} \) be the support of \(Z_i \). We take \(S = [\tau_L, \tau_U] \times \mathcal{Z} \) to be the set of quantile-subgroup pairs \((\tau, z)\) that we focus on. We are interested in the hypothesis of the following form: for each \((\tau, z) \in S\),

\[
H_0(\tau, z) : \gamma(\tau, z) = 0, \text{ vs } H_1(\tau, z) : \gamma(\tau, z) \neq 0,
\]

(1)
where \(\gamma(q^\Delta; \tau, z) \) is a functional of \(q^\Delta \) that depends on \((\tau, z)\). Using an appropriate functional \(\gamma(q^\Delta; \tau, z) \), the hypothesis expressed in (1) also allows for one-sided hypothesis tests. Examples of specific hypothesis testing problems involving QTE are provided in Table 1. The examples illustrate three tests for quantiles and QTEs for individual subgroups as well as three tests for the special case when \(Z_i = 1 \), which defines quantiles and QTEs for the full sample.

2.1.1 Joint Hypothesis Testing

We can combine the individual hypotheses into a joint hypothesis:

\[
H_0 : \Gamma(q^\Delta; S') = 0, \quad \text{vs} \quad H_1 : \Gamma(q^\Delta; S) \neq 0,
\]

where for each \(S' \subset S \), we define

\[
\Gamma(q^\Delta; S') = \sup_{(\tau, z) \in S'} \gamma(q^\Delta; \tau, z). \tag{3}
\]

The null hypothesis says that for all \((\tau, z) \in S\), \(H_0(\tau, z) \) expressed in (1) is true. As we shall see later, joint hypothesis testing is useful for testing the presence of QTE or QTE heterogeneity.

2.1.2 Multiple Hypothesis Testing

Often, we are interested in finding out which quantile-subgroup pair \((\tau, z)\) is responsible for the rejection of the joint null hypothesis expressed in (2). To address this question, let us consider the following multiple hypothesis testing problem. Suppose that

\[
S = \{S_w \subset S : w \in W\}, \tag{4}
\]

where \(W \) is an index set, and \(S_w \) is a subset of \(S \) such that \(S_w \cap S_{w'} = \emptyset \) whenever \(w \neq w' \). Our focus is to find \(w \in W \) such that the violation of the joint null hypothesis expressed in (2) is due to the violation of \(H_0(\tau, z) \) for some \((\tau, z) \in S_w \). For this, we first define

\[
W_P = \{w \in W : \gamma(q^\Delta; \tau, z) \neq 0, \text{ for some } (\tau, z) \in S_w\}.
\]

Our goal here is to find a data-dependent set \(\hat{W} \) that satisfies

\[
\limsup_{n \to \infty} P\{\hat{W} \cap W_P \neq \emptyset\} \leq \alpha. \tag{5}
\]
<table>
<thead>
<tr>
<th>Hypothesis Being Tested</th>
<th>Indiv. Hypothesis</th>
<th>Joint Hypothesis</th>
<th>Multiple Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing for the presence of QTE in the whole sample</td>
<td>$\gamma(q^\Delta(\tau, z))$</td>
<td>$\Gamma(q^\Delta(S'))$</td>
<td>${S_w : w \in W}$ in (4)</td>
</tr>
<tr>
<td>$H_0(\tau) : q^\Delta(\tau) = 0$, vs</td>
<td>$</td>
<td>q^\Delta(\tau)</td>
<td>$</td>
</tr>
<tr>
<td>$H_1(\tau) : q^\Delta(\tau) \neq 0$</td>
<td>$\max{q^\Delta(\tau), 0}$</td>
<td>$\sup_{\tau \in [\tau_L, \tau_U]} \max{q^\Delta(\tau), 0}$ (H.1)</td>
<td>${\tau : \tau \in [\tau_L, \tau_U]}$ (H.3)</td>
</tr>
<tr>
<td>Testing for positive QTE in the whole sample</td>
<td>$q^\Delta(\tau) > 0$</td>
<td>$</td>
<td>q^\Delta(\tau) - c</td>
</tr>
<tr>
<td>Testing for the presence of QTE across quantiles and subgroups</td>
<td>$H_0(\tau, z) : q^\Delta(\tau, z) = 0$, vs</td>
<td>$</td>
<td>q^\Delta(\tau, z)</td>
</tr>
<tr>
<td>$H_1(\tau, z) : q^\Delta(\tau, z) \neq 0$</td>
<td>$\max{q^\Delta(\tau, z), 0}$</td>
<td>$\sup_{(\tau, z) \in S'} \max{q^\Delta(\tau, z), 0}$</td>
<td>${\tau, z : (\tau, z) \in [\tau_L, \tau_U] \times Z}$ (H.4)</td>
</tr>
<tr>
<td>Testing for positive QTE across quantiles and subgroups</td>
<td>$q^\Delta(\tau, z) > 0$</td>
<td>$</td>
<td>q^\Delta(\tau, z) - c</td>
</tr>
<tr>
<td>Testing for QTE heterogeneity in some subgroups</td>
<td>$H_0(\tau, z) : q^\Delta(\tau, z) = c(z)$, vs</td>
<td>$</td>
<td>q^\Delta(\tau, z) - c(z)</td>
</tr>
<tr>
<td>$H_1(\tau, z) : q^\Delta(\tau, z) \neq c(z)$</td>
<td>$\max{q^\Delta(\tau, z), 0}$</td>
<td>$\sup_{(\tau, z) \in S'} \max{q^\Delta(\tau, z), 0}$</td>
<td>${(\tau, z) : \tau \in [\tau_L, \tau_U], z \in Z}$ (H.6)</td>
</tr>
<tr>
<td>Testing for which subgroups QTE are heterogenous</td>
<td>$H_0(\tau, z) : q^\Delta(\tau, z) = c(z)$, vs</td>
<td>$</td>
<td>q^\Delta(\tau, z) - c(z)</td>
</tr>
<tr>
<td>$H_1(\tau, z) : q^\Delta(\tau, z) \neq c(z)$</td>
<td>$\max{q^\Delta(\tau, z), 0}$</td>
<td>$\sup_{\tau \in [\tau_L, \tau_U]} \max{q^\Delta(\tau, z), 0}$</td>
<td></td>
</tr>
</tbody>
</table>

Notes: $q^\Delta(\tau)$ is the same as $q^\Delta(\tau, z)$ except that Z_i is taken to be a constant, say, 1, for all $i = 1, ..., n$. We define $c = \frac{1}{\tau_U - \tau_L} \int_{\tau_L}^{\tau_U} q^\Delta(\tau, z) d\tau$ and $c(z) = \int_{\tau_L}^{\tau_U} q^\Delta(\tau, z) d\tau$, i.e. the mean QTE for the whole sample and conditional on subgroup. (H.1) through (H.6) denote the hypotheses being tested in the empirical application in Section 3.2.
The probability in equation (5) is the probability of mistakenly declaring the violation of $H_0(\tau, z)$ for some $(\tau, z) \in S_w$ for every $w \in \hat{W}$, and is called the FWER in the literature on multiple testing. We aim to construct such a set \hat{W} that controls the FWER under a small number α asymptotically.

2.2 A Bootstrap Step-Down Procedure for Multiple Testing

2.2.1 Estimation of QTE and Bootstrap Joint Testing

The identification and inference on $q^\Delta(\tau, z)$ for each quantile are established by Firpo (2007). Here we propose joint hypothesis testing and multiple hypothesis testing procedures and provide conditions under which the FWER is asymptotically under control.\(^5\)

To motivate estimation of $q^\Delta(\tau, z)$, note that we can identify $q_d(\tau, z)$ by

$$q_d(\tau, z) = \arg \min_q \mathbb{E}[\omega_{di} \rho_r (Y_i - q) | Z_i = z], d = 1, 0,$$

where $\omega_{di} = 1\{D_i = d\}/p_d(X_i)$ and $\rho_r(x) = x \cdot (\tau - 1\{x \leq 0\})$ is the check function. Thus, we estimate $q_d(\tau, z)$ by

$$\hat{q}_d(\tau, z) = \arg \min_q \frac{1}{\sum_{i=1}^{n} 1 \{Z_i = z\}} \sum_{i=1}^{n} \hat{\omega}_{di} \rho_r (Y_i - q) 1 \{Z_i = z\},$$

with $\hat{\omega}_{di} = 1\{D_i = d\}/\hat{p}_d(X_i)$, and $\hat{p}_d(x)$ is the estimated propensity score.\(^6\) Following Firpo (2007), we obtain

$$\hat{q}^\Delta(\tau, z) = \hat{q}_1(\tau, z) - \hat{q}_0(\tau, z).$$

To construct a joint test or a multiple test, we calculate a critical value using a bootstrap method. Specifically, we first resample with replacement from the original sample B times and construct the propensity score weighted outcomes $\hat{Y}_{di}^* = Y_i^* 1\{D_i^* = d\}/\hat{p}_d^*(X_i^*)$, where $\{(Y_i^*, D_i^*, X_i^*)\}_{i=1}^{n}$ denotes each bootstrap sample and $\hat{p}_1^*(X_i^*)$ the estimated propensity score using the bootstrap sample. Then we construct

$$\hat{q}^{\Delta^*}(\tau, z) = \hat{q}_1^*(\tau, z) - \hat{q}_0^*(\tau, z),$$

\(^5\)Extending the results to the case of cluster dependence is straightforward, as long as two conditions are satisfied: first, the observations are all identically distributed across the cross-sectional units, and second, the number of the clusters increase to infinity as the number of observations does so. For the bootstrap inference, one can simply use block bootstrap in which one resamples clusters with replacement instead of individual sample units.

\(^6\)Following Smith and Todd (2005), the propensity score $\hat{p}(x)$ is estimated using data from the full sample.
where \(\hat{q}^*_1(\tau, z) \) and \(\hat{q}^*_0(\tau, z) \) are the \(\tau \)-th empirical quantiles of \(\{\hat{Y}^*_i\}_{i=1}^n \) and \(\{\hat{Y}^*_i\}_{i=1}^n \), respectively, within the samples with \(Z_i^* = z \).

For joint hypothesis testing expressed in (2), we construct test statistics

\[
T = \Gamma(\hat{q}^\Delta ; S), \quad \text{and} \quad T^* = \Gamma(\hat{q}_{\tau}^\Delta - \hat{q}^\Delta ; S),
\]

and use as critical value the \((1 - \alpha) \)-th percentile from the bootstrap distribution of \(T^* \). By subtracting \(\hat{q}_{\tau}^\Delta \), we re-center the bootstrap test statistic in order to impose the least favorable configuration under the null hypothesis.

2.2.2 Bootstrap Multiple Testing Procedure for QTEs

The multiple testing procedure adapts the step-down method of Romano and Wolf (2005) and Romano and Shaikh (2010) to our set-up. First, let \(\hat{q}^\Delta_{b*} \) be the same as \(\hat{q}^\Delta \) except that it is made explicit that \(\hat{q}^\Delta_{b*} \) is constructed using the \(b \)-th bootstrap sample. For each subset \(W' \subset W \), we define

\[
T^*_b(W') = \sup_{w \in W'} \Gamma(\hat{q}_{b*}^\Delta - \hat{q}^\Delta ; S_w).
\]

Setting \(\tilde{W}_1 = W \), we take \(\hat{c}_{1-\alpha}(\tilde{W}_1) \) to be the smallest \(c \) such that

\[
\frac{1}{B} \sum_{b=1}^B \mathbf{1}\{T^*_b(\tilde{W}_1) \leq c\} \geq 1 - \alpha.
\]

That is, at \(\hat{c}_{1-\alpha}(\tilde{W}_1) \), the fraction of test statistics across the \(B \) bootstrap samples that exceed that critical value is at most \(\alpha \). Then, we retain those quantiles that do not exceed the critical value \(\hat{c}_{1-\alpha}(\tilde{W}_1) \), i.e., we define

\[
\tilde{W}_2 = \left\{ w \in W : \Gamma(\hat{q}_{b*}^\Delta ; S_w) \leq \hat{c}_{1-\alpha}(\tilde{W}_1) \right\},
\]

so that \(\tilde{W}_2 \) is a subset of \(\tilde{W}_1 \). Now, we take \(\hat{c}_{1-\alpha}(\tilde{W}_2) \) to be the smallest \(c \) such that

\[
\frac{1}{B} \sum_{b=1}^B \mathbf{1}\{T^*_b(\tilde{W}_2) \leq c\} \geq 1 - \alpha.
\]

Using this, we define

\[
\tilde{W}_3 = \left\{ w \in W : \Gamma(\hat{q}_{b*}^\Delta ; S_w) \leq \hat{c}_{1-\alpha}(\tilde{W}_2) \right\}.
\]
This procedure is repeated until at step k, we obtain

$$
\tilde{W}_k = \left\{ w \in W : \Gamma(\hat{q}^\Delta; S_w) \leq \hat{c}_{1-\alpha}(\tilde{W}_{k-1}) \right\}
$$

such that no further element of \tilde{W}_k is eliminated (i.e. $\tilde{W}_k = \tilde{W}_{k-1}$). We take

$$
\hat{W} = W \setminus \tilde{W}_k.
$$

(6)

To incorporate multiple testing for QTE heterogeneity (hypothesis (H.6) in Table 1), we take the definition in (3) and follow the same step-down procedure after replacing $\Gamma(\hat{q}^\Delta; S_w)$ by $\Gamma(\hat{q}^\Delta - \bar{q}^\Delta; S_w)$ and $\Gamma(\hat{q}^{\Delta*} - \hat{q}^\Delta; S_w)$ by $\Gamma(\hat{q}_b^{\Delta*} - \hat{q}^\Delta - (\bar{q}_b^{\Delta*} - \bar{q}^\Delta); S_w)$, where

$$
\bar{q}^\Delta(z) = \frac{1}{\tau_U - \tau_L} \int_{\tau_L}^{\tau_U} \hat{q}^\Delta(\tau, z) d\tau, \text{ and } \bar{q}^{\Delta*}(z) = \frac{1}{\tau_U - \tau_L} \int_{\tau_L}^{\tau_U} \hat{q}^{\Delta*}(\tau, z) d\tau.
$$

2.2.3 Asymptotic Control of FWER

In this subsection, we provide conditions that ensure the set \hat{W} (in (6)) obtained through the step-down procedure controls the FWER asymptotically. For brevity, we focus on a situation where $Z_i = 1$ for all $i = 1, \ldots, n$, allowing us to suppress the argument z from $q_d(\tau, z)$, $q_d^\Delta(\tau, z)$, and $\gamma(q^\Delta; \tau, z)$, writing them as $q_d(\tau)$, $q_d^\Delta(\tau)$, and $\gamma(q^\Delta; \tau)$. We also take $W = [\tau_L, \tau_U]$. For each $\tau \in [\tau_L, \tau_U]$, and $d \in \{0, 1\}$, we rewrite

$$
\hat{q}_d(\tau) = \arg\min_{q \in \mathbb{R}} \hat{Q}_d(q; \tau),
$$

where, for $q \in \mathbb{R}$,

$$
\hat{Q}_d(q; \tau) = \sum_{i=1}^{n} \frac{1\{D_i = d\}}{\hat{p}_d(X_i)} \rho_\tau(Y_i - q).
$$

We also define its population version:

$$
q_d(\tau) = \arg\min_{q \in \mathbb{R}} E[Q_d(q; \tau)],
$$

where

$$
Q_d(q; \tau) = \sum_{i=1}^{n} \frac{1\{D_i = d\}}{p_d(X_i)} \rho_\tau(Y_i - q).
$$
Throughout, we assume that the propensity score is parametrically specified as follows:

\[P\{D_i = 1|X_i = x\} = G(x; \beta_0), \]

where \(\beta_0 \) is known to lie in a parameter space \(\Theta \subset \mathbb{R}^{d_\beta} \). Let \(\hat{\beta} \) be the estimator of \(\beta_0 \), so that we take

\[\hat{p}_d(x) = G(x; \hat{\beta})^d(1 - G(x; \hat{\beta}))^{1-d}, \text{ } d \in \{0, 1\}. \]

We next introduce bootstrap estimator \(\hat{\beta}^* \) that is constructed in the same manner as \(\hat{\beta} \), with the exception that we use the bootstrap sample \((Y^*_i, X^*_i, D^*_i)_{i=1}^n \) (i.e., the i.i.d. draws from the empirical distribution of \((Y_i, X_i, D_i)_{i=1}^n \)) in place of the original sample \((Y_i, X_i, D_i)_{i=1}^n \). Let \(\mathcal{F}_n \) be the \(\sigma \)-field generated by \((Y_i, X_i, D_i)_{i=1}^n \). For a matrix \(A \), we define \(\|A\| = \sqrt{\text{tr}(AA')} \).

We let

\[V_i = (Y_i, X'_i, D_i)' \text{ and } V^*_i = (Y^*_i, X''_i, D^*_i)' \]

As for the estimators \(\hat{\beta} \) and \(\hat{\beta}^* \), we make the following assumption.

Assumption 2.2. There exists a map \(\psi \) such that the following two statements hold.

(i)

\[\sqrt{n}(\hat{\beta} - \beta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\psi(V_i) - E\psi(V_i)) + o_P(1), \]

where \(\|\text{Var}(\psi(V_i))\| < \infty \).

(ii)

\[\sqrt{n}(\hat{\beta}^* - \hat{\beta}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\psi(V^*_i) - E[\psi(V^*_i)|\mathcal{F}_n]) + o_P(1). \]

This assumption is typically satisfied by most \(\sqrt{n} \)-consistent and asymptotically normal estimators \(\hat{\beta} \).

Let \(G^{(1)}_k(x; \beta) = \partial G(x; \beta)/\partial \beta_k \), and for \(d \in \{0, 1\} \),

\[g_{d,k}(x; \beta) = (G^{(1)}_k(x; \beta))^d \left(-G^{(1)}_k(x; \beta)\right)^{1-d}, \]

7Extending the results to the situation of nonparametrically specified propensity scores is not difficult. Our focus on parametric specification of the propensity score is motivated by the fact that it is commonly used in empirical applications, despite receiving less attention in the theoretical econometrics literature.
and \(g_d(x; \beta) = [g_{d,1}(x; \beta), \ldots, g_{d,d_3}(x; \beta)]' \). Let \(g_d^{(1)}(x; \beta) = \partial g_d(x; \beta)/\partial \beta' \). We collect regularity conditions for \(g_d(x; \beta) \) and the distribution of \(Y_{di} \) below.

Assumption 2.3. (i) The parameter space \(\Theta \) for \(\beta_0 \) is bounded in \(\mathbb{R}^{d_3} \) and

\[
\sup_{x \in X} \sup_{\beta \in \Theta} \left(\| g_d(x; \beta) \| + \| g_d^{(1)}(x; \beta) \| \right) < \infty.
\]

(ii) The set \(J_d(\tau_U, \tau_L) \equiv \{ g_d(\tau) : \tau \in [\tau_L, \tau_U] \} \) is bounded for each \(d \in \{0, 1\} \).

(iii) The density \(f_d \) of \(Y_{di} \) is continuous on a closed interval containing \(J_d(\tau_U, \tau_L) \) and bounded away from zero on \(J_d(\tau_U, \tau_L) \).

Define \(W_P = \{ \tau \in [\tau_L, \tau_U] : \gamma(q^\Delta(\tau); \tau) \neq 0 \} \) and let \(\hat{W} \) be the set constructed using the step-down procedure explained above. Then let \(\text{FWER} = P\{ \hat{W} \neq \emptyset \} \).

Theorem 2.1. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, and that the set of functionals \(\{ \gamma(\cdot; \tau) : \tau \in [\tau_L, \tau_U] \} \) is equicontinuous.\(^8\) Then,

\[
\limsup_{n \to \infty} \text{FWER} \leq \alpha.
\]

The condition on the functionals \(\gamma(\cdot; \tau) \) is satisfied by all the examples listed in Table 1. Online Appendix B presents the complete proof of Theorem 2.1 that involves several steps. Briefly, we first obtain the asymptotic linear representation of \(\sqrt{n}(\hat{\gamma}(\tau) - \gamma(\tau)) \) that is uniform over \(\tau \in [\tau_L, \tau_U] \), using Pollard’s convexity lemma; similarly as in Hahn (1995) and Kato (2009). We next use the maximal inequality in Massart (2007) as in Guerre and Sabbah (2012), to additionally establish the asymptotic equicontinuity of the leading process in the asymptotic linear representation, and its weak convergence to a tight Gaussian process indexed by \(\tau \in [\tau_L, \tau_U] \).\(^9\) With these results and using the assumption that \(\gamma \) is a continuous functional, we verify that the conditions of Theorem 2.1 of Romano and Shaikh (2010) are satisfied, thereby obtaining the desired result of asymptotic FWER control.

\(^8\)We endow the space of bounded measurable functions with the sup norm, and view \(\gamma(\cdot; \tau) \) as a functional on this space for each \(\tau \in [\tau_L, \tau_U] \).

\(^9\)Note the econometric literature focuses mostly on quantile regression models. Modifications to the standard arguments are needed in our set-up because we estimate a parametric specification of propensity scores in the first step.
3 Empirical Application

3.1 Experimental Design and Data

Andrabi, Das, and Khwaja (2017) conduct an experiment in 112 Pakistani villages to study the impact of providing parents with a detailed two page report card on their child’s performance and child’s school-level performance on a variety of outcomes. Each report card contained the student’s test score and quintile rank (compared to all tested students) in three subject areas, as well as for all of the schools in the village presented information on i) the average score, number of children tested, and iii) quintile rank (across all schools tested in the sample). In accountability systems, such school level report cards are frequently postulated to lead to improved parental investment decisions in education. The treatment exogenously increased information in 56 of the 112 villages, and Andrabi, Das, and Khwaja (2017) argue that each village can be viewed as an island economy where private and public schools compete.10

The focus of Andrabi, Das, and Khwaja (2017) is to examine the gradient in the estimated causal parameter of providing a report card along both the school type and baseline test score distributions. It is important to stress that the institutional structure of education in Pakistan offers several unique advantages that Andrabi, Das, and Khwaja (2017) exploit to facilitate their study of how competition affects equilibrium school and student outcomes at the market level. Rural villages in Pakistan are typically located at a great distance from each other or are separated by natural barriers. Carneiro, Das, and Reis (2013) find that parents of children in primary school in Pakistan often make enrollment decision that places great weight on the physical distance from home to school. Second, within each village there are multiple affordable private schools, and an estimated 35 percent of all students were enrolled in private schools in 2005. Third, school inputs such as teacher education differ sharply between government and private school and many private schools have a secular orientation. There are very few if any regulations on the private schools that are generally not supported by the government.

The idea that the gradient in the effect of increased information from the report card will differ between public and private schools is consistent with predictions from models of optimal pricing and quality choices in markets with asymmetric information (e.g., Wolinsky, 1983; Shapiro, 1983; Milgrom and Roberts, 1986). These models predict heterogenous responses from improved information. The quality of initially low performing schools as measured by student test scores will increase at a larger rate than responses in initially

10These villages are located in one of three selected districts in Pakistan’s most populous province, Punjab.
high-quality schools; and under some assumptions on parental demand for school quality the responses in high quality schools may even be negative. Camargo et al. (2014) develop an alternative model in the spirit of Holmström (1999) to show how test score disclosure would lead to heterogenous changes in subsequent student test score performance between public and private schools.11

Taken together, these economic models predict students and parents responding to information on school quality and their relative rank within a school, with heterogeneity predicting larger behavioral responses to receiving a (more) negative signal.12 The extent of this heterogeneity can vary across subgroups defined by school type, because administrators in private schools may face greater pressure than public school counterparts and provide a larger response to having negative information being disclosed. Thus, the general shape of treatment effect heterogeneity and the resulting QTEs could be shifted to the left or right, be compressed or stretched, or otherwise be transformed across subgroups without losing their overall shape. In summary, economic theory predicts treatment effect heterogeneity both within and between subgroups, motivating the development of tools to assess its extent in general, as well as in the specific context of the Andrabi, Das, and Khwaja (2017) information provision experiment.13

Last, beyond the advantages of the institutional structure, Andrabi, Das, and Khwaja (2017) distinguishes itself from the growing body of work evaluating randomized interventions in developing countries by having collected a rich detailed longitudinal dataset. Beginning in 2004, approximately 12,000 grade 3 students were surveyed. The follow-up rate was over 96 percent in subsequent years. Schools also completed annual surveys providing rich information on their operations as well as their inputs. A subset of households were also randomly selected for parents to provide additional information on home inputs. In our study, to facilitate comparisons we utilize the same control variables as Andrabi, Das, and Khwaja (2017) and use a standardized grade 4 test score as our primary outcome variable to fully explore treatment effect heterogeneity.

11The model they consider is pitched to be a reduced-form version of a dynamic model of managerial effort along the lines of Holmström (1999).

12Camargo et al. (2018) present evidence of heterogenous responses in Brazil and Koning and Van der Wiel (2012) also find that test scores increase at a higher rate in schools ranked poorly in national newspapers in the Netherlands.

13In Online Appendix D, we provide an additional empirical demonstration where we test for treatment effect heterogeneity that is also motivated by an economic model. Specifically, we use a simple static model of labor supply that predicts heterogenous responses to changes in the parameters of a welfare reform policy within and between subgroups. To illustrate the tests we explore the extent of heterogeneity in labor supply responses in the Jobs First welfare experiment across percentiles of the earnings distribution.
Table 2: Child-Level Summary statistics

<table>
<thead>
<tr>
<th></th>
<th>No report card</th>
<th>Report card</th>
<th>Difference</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean/Std.dev./N</td>
<td>Mean/Std.dev./N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average test score, round 1</td>
<td>−0.0134 (0.942)</td>
<td>−0.0229 (0.886)</td>
<td>0.569</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5786</td>
<td>6324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average test score, round 2</td>
<td>0.186 (1.004)</td>
<td>0.229 (0.943)</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6266</td>
<td>6538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female child</td>
<td>0.425 (0.494)</td>
<td>0.431 (0.495)</td>
<td>0.438</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8443</td>
<td>8760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child’s age</td>
<td>9.680 (1.505)</td>
<td>9.671 (1.446)</td>
<td>0.702</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6616</td>
<td>7117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Village literacy rate</td>
<td>38.46 (12.88)</td>
<td>36.26 (10.63)</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8443</td>
<td>8760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of households in village</td>
<td>708.3 (375.8)</td>
<td>797.3 (591.0)</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8443</td>
<td>8760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School Herfindahl index</td>
<td>0.181 (0.0680)</td>
<td>0.183 (0.0676)</td>
<td>0.092</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8443</td>
<td>8760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Village wealth (median monthly expenditure)</td>
<td>4498.5 (1649.4)</td>
<td>4638.6 (1454.8)</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8443</td>
<td>8760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government school (excluded category: private)</td>
<td>0.675 (0.468)</td>
<td>0.698 (0.459)</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6617</td>
<td>7118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School size</td>
<td>251.6 (199.5)</td>
<td>248.7 (194.9)</td>
<td>0.386</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6617</td>
<td>7118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High scoring school (above 60th percentile)</td>
<td>0.499 (0.500)</td>
<td>0.486 (0.500)</td>
<td>0.096</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8443</td>
<td>8760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother’s education above middle school</td>
<td>0.325 (0.469)</td>
<td>0.333 (0.471)</td>
<td>0.498</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3097</td>
<td>3278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father’s education above middle school</td>
<td>0.630 (0.483)</td>
<td>0.590 (0.492)</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3090</td>
<td>3278</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Means, standard deviations (in parentheses), and numbers of observations for children in villages that did not and did receive the information experiment treatment. p-values for the t-test of the null hypothesis that the means do not differ between treatment and control group.
Table 2 shows child-level summary statistics by treatment status for our outcome and subgroup variables. Our outcome variable, “Average test score, round 2,” is significantly higher among children in the treated group (whose parents received the school report cards), which is consistent with the findings in Andrabi, Das, and Khwaja (2017). The village-level variables including literacy rate, number of households, school Herfindahl index, and average wealth differ significantly between treatment and control group. Recall that randomization occurred on the village level and not on the child level, and these significant differences disappear in village-level comparisons. We also find significant differences in the fraction of government schools, high-scoring schools, and fathers with above-middle school education by treatment status. Our testing approach incorporates propensity score weighting, which allows us to balance treatment and control group based on these observed variables.

3.2 Results

In this section, we obtain new insights extending the findings of Andrabi, Das, and Khwaja (2017) by conducting hypothesis tests based on the framework described in Section 2. Our analysis focuses on the average of standardized test scores across three subjects after random assignment as our outcome variable, and we estimate QTEs of access to report cards for percentiles 1 to 99 using the Firpo (2007) estimator. To balance covariates between the treatment and control groups, we estimate the propensity score $\hat{p}_d(x)$ using a parametric logit specification. Specifically, we include district fixed effects, and village wealth, literacy rate, school Herfindahl index, and number of households. For the results that follow, we set the level of each test to $\alpha = 0.05$. All test results are based on bootstraps with $B = 9999$.

First, we consider QTEs for the entire sample, i.e. we set $Z_i = 1$ in the notation of Section 2. Figure 1 shows our estimated QTEs for the full sample along with 90 percent pointwise confidence intervals. We find pointwise significant and positive treatment effects extending

14 To infer treatment effects for specific individuals from QTEs we have to assume that there are no rank reversals in the test score distribution between the treatment and control groups. While this assumption is likely violated, positive QTEs imply that the treatment has a positive effect for some interval of the test score distribution.

15 Andrabi, Das, and Khwaja (2017) include district fixed effects treating the data as i.i.d. across districts and do not model inter- and intra-cluster correlation further. We follow this approach to extend their findings and draw bootstrap samples of individuals instead of villages or districts. When using a block bootstrap that resamples entire villages, the QTE is statistically significant only for one percentile even without adjustments for multiple testing. For completeness, we show the results under block bootstrapping in Online Appendix C. See also footnote 5.

16 We show 90 percent confidence intervals to make them comparable to the multiple testing results, which are obtained from one-sided tests that control the FWER at 5 percent. The pointwise confidence intervals are calculated as the 5th and 95th percentile of the distribution of bootstrapped QTEs.
from the first to the 75th percentile. Starting with the 83rd percentile the point estimates for QTEs become negative but the pointwise confidence intervals include zero.

Table 3 summarizes the results for joint hypothesis testing for positive and heterogeneous QTEs. First, we test the null hypothesis of no positive treatment effect at any percentile, i.e. (H.1) in Table 1. As shown in Figure 1, the largest QTE (which occurs at the third percentile) equals 0.387. With the bootstrap critical value of 0.230, we reject the null hypothesis at the 5 percent level. The associated p-value equals 0.003. Thus, there is clear evidence that the information provision had the desired effect of increasing student performance for at least some individuals. Next, we present results from the test of no treatment effect heterogeneity across quantiles, i.e. (H.2) in Table 1. The test statistic, which is calculated as the largest deviation from the mean estimated QTE ($c = 0.0583$), equals 0.329. With a bootstrap critical value of 0.240, we also reject this null hypothesis at 5 percent with a p-value of 0.012. This result implies that treatment effects are heterogeneous across quantiles, thereby indicating that individuals vary in their response to the report cards.

Having rejected the null hypothesis of no treatment effect heterogeneity, we now identify the range of the test score distribution where positive treatment effects are located, i.e. we test (H.3) in Table 1. The shaded area in Figure 1 corresponds to the set $\hat{W} = W \setminus \hat{W}_k$. This
Table 3: Testing for Presence of Positive QTEs and QTE Heterogeneity Without Subgroups

<table>
<thead>
<tr>
<th>Test for positive QTE (H.1)</th>
<th>Test statistic</th>
<th>Critical value at 5%</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.38747</td>
<td>0.22957</td>
<td>0.0031003</td>
</tr>
<tr>
<td>Test for QTE heterogeneity (H.2)</td>
<td>0.32917</td>
<td>0.24014</td>
<td>0.011701</td>
</tr>
</tbody>
</table>

Notes: This table shows test results for hypotheses with $\gamma(q^\Delta; \tau, z) = \max\{q^\Delta(\tau, 1), 0\}$ and $\gamma(q^\Delta; \tau, z) = |q^\Delta(\tau, 1) - c|$, i.e. we test that there is no positive treatment effect for all quantiles and that the treatment effect is the same for all quantiles, respectively, i.e. we test hypotheses (H.1) and (H.2) in Table 1.

test accounts for potential dependencies across quantiles of the same outcome variable and the number of individual hypotheses ($|S| = 99$).

Examining the plot we observe that the set of significantly positive QTEs supports the distributional effects predicted by the underlying theory. However, we find that individuals located above the 19th percentile of the test score distribution do not exhibit significant QTEs once we adjust for multiple testing. The smallest and largest quantiles at which QTEs are significantly positive correspond to gains of 0.088 and 0.387, respectively. Hence, we can conclude that the benefits of this particular form of accountability are more confined than one would otherwise find based on traditional statistical inference that ignores potential dependencies and testing at multiple percentiles. We find that there is a more limited range of individuals whose academic outcomes truly increase when assigned to the treatment group.

Next, we present results incorporating subgroups. Economic theory predicts that individuals with different observed characteristics may react differently to the same set of information. In particular, individual and village characteristics may determine for which range of the test score distribution we observe an increase or decrease in test score performance. Following Andrabi, Das, and Khwaja (2017), we consider subgroups defined by child characteristics, type of school, and characteristics of the villages.\footnote{Note that in our application the number of hypotheses being tested is quite small particularly relative to genomic studies from genome wide association studies. If the number of hypotheses were large it is well known that FWER controlling procedures typically have low power, and in response Gu and Shen (2017) propose an optimal false discovery rate controlling method.}

Figure 2 presents QTEs conditional on child gender and child baseline test scores. These figures provide an easy and intuitive way to check which subgroups benefit from being assigned to receive report cards (heterogeneity across subgroups). In addition, we can inspect the figure for each subgroup to determine the portion of the student test score distribution in which individuals exhibit positive subgroup-specific QTEs (heterogeneity within subgroup).
Note: Multiple testing results show quantiles for which the QTE is positive at a FWER of 5 percent (see hypothesis (H.4) in Table 1).

(a) By Child’s Gender

(b) By Child’s Baseline Test Score

Figure 2: Quantile Treatment Effects and Multiple Testing Results, by Child Characteristics

Shaded areas continue to denote significant QTEs based on our multiple testing procedure of testing hypothesis (H.4) in Table 1.

Figure 2a presents QTEs for child gender subgroups. The effect of the access to report cards on test scores is larger for girls throughout the test score distribution. For boys, there is no statistically significant positive effect above the 12th percentile (based on the point-
wise confidence intervals). When adjusting inference for multiple testing, we find significant effects among girls in the 1st to 14th percentile and boys in the 2nd to 8th percentile. The second panel considers subgroups defined by whether the child’s baseline test score was above or below the median. The estimated QTEs and point-wise confidence intervals in Figure 2b show that it is mostly children with a below-median baseline test score who benefit from the report card experiment. When we adjust inference for multiple testing, however, only children in the very top percentile of the post-experiment test score distribution who scored below the median at baseline exhibit significantly positive QTEs. In addition, children who scored above the median at baseline and whose post-experiment score falls in the first percentile also see a significant effect of information provision.¹⁸

Next, we construct subgroups based on village characteristics. Figure 3 shows the estimated subgroup-specific QTEs and multiple testing results. We find significant treatment effects predominantly for children in villages with below-median wealth, above-median literacy rates, below-median school concentration (measured by the school Herfindahl Index), and above-median size. From a policy perspective, it is may be important to know that report cards improve children’s test scores in relatively poor villages. At the same time, providing written report cards to parents may not be a successful strategy in villages with low literacy rates. In general, these results are important because they can show policymakers which subgroups should be targeted with an accountability program.

Finally, we consider subgroups defined by the combination of school ownership type (government or private) with one of two different measures of student performance (school level and relative). We first create subgroups by interacting school ownership with school performance in the baseline test to yield four subgroups.¹⁹ Figure 4 illustrates the estimation and multiple testing results. We find that significantly positive QTEs are concentrated among low-scoring children in relatively high-performing government schools and high-scoring children in low-performing private schools. Moreover, consistent with the negative average treatment effect reported in Andrabi, Das, and Khwaja (2017) we do not find any positive effects among children in high-performing private schools.

The second student performance measure we consider pertains to the child’s performance at the baseline test relative to his or her school’s performance. Specifically, we construct subgroups by dividing the sample into groups defined by the combination of school ownership

¹⁸The data also include information on parental educational attainment and monetary and time inputs into the children’s human capital. However, the parental survey was only fielded to a third of the sample, and the smaller sample size does not give us enough power to conduct our multiple testing corrections.

¹⁹Specifically, following Andrabi, Das, and Khwaja (2017) a school is defined as high-performing if its mean baseline test score exceeds the 60th percentile of all schools’ mean scores.
Note: Multiple testing results show quantiles for which the QTE is positive at a FWER of 5 percent (see hypothesis (H.4) in Table 1).

Figure 3: Quantile Treatment Effects and Multiple Testing Results by Village Characteristics
and whether the child performed above or below the median test score of their respective school at baseline (high and low achieving students, respectively). Figure 5 shows that children in government schools only benefit from the report cards if they are located in the bottom of the test score distribution irrespective of whether they scored above or below the median of their school’s test score at baseline. In addition, the QTEs are significantly positive under corrections for multiple testing among children who score above the 90th percentile and are enrolled in a private school where they scored below the within school median at baseline.

Taken together, our results in Figures 4 and 5 provide additional nuance on the findings of Andrabi, Das, and Khwaja (2017) related to which students in which schools gain from access to report cards. Bitler, Gelbach, and Hoynes (2006) motivate the valuable additional policy insights provided by distributional effects as showing what mean estimates can miss. In Figure 4, our evidence of treatment effect heterogeneity is masked if one estimates average

Footnote: We thank Jishnu Das for pointing out the distinction between these two baseline performance measures. Table VII in Online Appendix III of Andrabi, Das, and Khwaja (2017) shows average treatment effects by children’s baseline performance relative to their school.
treatment effects even conditional on school type and performance. Further, in Figure 5, while the main result is consistent with Andrabi, Das, and Khwaja (2017) who find that low achieving students benefit from the report card intervention more than high achieving students, we provide additional insights by showing that this benefit is confined to the top decile among low achieving students.

We now formally test for treatment effect heterogeneity between and within subgroups. Table 4 presents the results for testing hypothesis (H.5) in Table 1. This null hypothesis posits that there are no differences across subgroups that can explain the observed heterogeneity of QTEs in the full sample. We can reject the hypothesis for all sets of subgroups at a level of 5 percent. We conclude that differences across subgroups do not explain the observed distributional treatment effects in the whole sample.

The test results shown in Table 5 additionally account for potential dependencies within and across subgroups. These test results provide additional insight because they identify the individual subgroups within a class of subgroups that exhibit treatment effect heterogeneity. That is, we test hypothesis (H.6) in Table 1. In these results, a p-value below 0.05 indicates that the corresponding subgroup exhibits a statistically significant amount of treatment effect.
Table 4: Testing for Treatment Effect Heterogeneity Between Subgroups

<table>
<thead>
<tr>
<th>Subgroup category</th>
<th>Test statistic</th>
<th>Critical value at 5%</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child’s gender</td>
<td>0.45014</td>
<td>0.29377</td>
<td>0.0026003</td>
</tr>
<tr>
<td>Child’s baseline test score</td>
<td>1.2681</td>
<td>0.41076</td>
<td>0</td>
</tr>
<tr>
<td>Village wealth</td>
<td>1.2681</td>
<td>0.33394</td>
<td>0</td>
</tr>
<tr>
<td>Village literacy rate</td>
<td>1.2681</td>
<td>0.3618</td>
<td>0</td>
</tr>
<tr>
<td>School Herfindahl Index</td>
<td>1.2681</td>
<td>0.26926</td>
<td>0</td>
</tr>
<tr>
<td>Village size</td>
<td>1.2681</td>
<td>0.39368</td>
<td>0</td>
</tr>
<tr>
<td>School type and school performance</td>
<td>1.2681</td>
<td>0.73724</td>
<td>0.00090009</td>
</tr>
<tr>
<td>School type and child’s performance</td>
<td>1.5732</td>
<td>0.6843</td>
<td>0.00020002</td>
</tr>
</tbody>
</table>

Notes: This table shows test results for hypotheses with \(\gamma(q^\Delta; \tau, z) = |q^\Delta(\tau, z) - c(z)| \), i.e. these tests show for which subgroups categories we can reject treatment effects that are homogenous within subgroups for all subgroups, i.e. we test hypothesis (H.5) in Table 1.

heterogeneity across the test score distribution. In each and every subgroup category, we find evidence of treatment effect heterogeneity. These results clearly suggest a substantial amount of treatment effect heterogeneity between subgroups and across the student performance distribution within subgroups.

4 Conclusion

In this paper we describe general tests for treatment effect heterogeneity in settings with selection on observables. These tests allow researchers to provide policymakers with guidance on complex patterns of treatment effect heterogeneity both within and across subgroups. In the present context, the results can guide policymakers in adjusting how information on student performance is provided, for example by introducing more (or different) conditions across villages. We establish the asymptotic validity of this bootstrap multiple testing procedure for QTEs. In contrast to much of the existing literature on procedures to test for heterogeneous treatment effects, these tests make corrections for multiple testing and therefore provide valid inference under dependence between subgroups and quantiles.

Using data from Andrabi, Das, and Khwaja (2017), we not only present evidence of considerable heterogeneity of the effects of access to report cards on student achievement for
Table 5: Testing Which Subgroups Exhibit Treatment Effect Heterogeneity

<table>
<thead>
<tr>
<th>Subgroup category</th>
<th>Test statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child’s gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.450</td>
<td>0</td>
</tr>
<tr>
<td>Male</td>
<td>0.304</td>
<td>0</td>
</tr>
<tr>
<td>Child’s baseline test score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above median</td>
<td>0.516</td>
<td>0</td>
</tr>
<tr>
<td>Below median</td>
<td>0.506</td>
<td>0</td>
</tr>
<tr>
<td>Village wealth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above Median</td>
<td>0.19</td>
<td>0.01</td>
</tr>
<tr>
<td>Below Median</td>
<td>0.73</td>
<td>0</td>
</tr>
<tr>
<td>Village literacy rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above median</td>
<td>0.545</td>
<td>0</td>
</tr>
<tr>
<td>Below median</td>
<td>0.121</td>
<td>0.01</td>
</tr>
<tr>
<td>School Herfindahl Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above median</td>
<td>0.224</td>
<td>0</td>
</tr>
<tr>
<td>Below median</td>
<td>0.494</td>
<td>0</td>
</tr>
<tr>
<td>Village size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above median</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Below median</td>
<td>0.155</td>
<td>0.02</td>
</tr>
<tr>
<td>School type and school performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High scoring government</td>
<td>1.127</td>
<td>0</td>
</tr>
<tr>
<td>Low scoring government</td>
<td>0.237</td>
<td>0</td>
</tr>
<tr>
<td>High scoring private</td>
<td>0.0749</td>
<td>0</td>
</tr>
<tr>
<td>Low scoring private</td>
<td>1.268</td>
<td>0</td>
</tr>
<tr>
<td>School type and child’s performance relative to school</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government/high achieving</td>
<td>0.834</td>
<td>0</td>
</tr>
<tr>
<td>Government/low achieving</td>
<td>0.260</td>
<td>0</td>
</tr>
<tr>
<td>Private/high achieving</td>
<td>0.0949</td>
<td>0</td>
</tr>
<tr>
<td>Private/low achieving</td>
<td>1.573</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: This table shows results of tests for which subgroups in each subgroup category we can reject homogenous treatment effects, i.e. we test hypothesis (H.6) in Table 1. p-values are calculated using a grid with step size 0.005. Hence an entry of zero indicates that the corresponding p-value is below 0.005.
most subgroups, but show in which subgroups and which test score quantiles within subgroups the benefits of information provision are highest. In addition, our empirical analysis emphasizes the importance of correcting for multiple testing. Testing across different subgroups is policy relevant, and while Crump et al. (2008) provide an approach to select which subpopulations to study, our tests go further by considering treatment effect heterogeneity conditional on observable characteristics.

Given the considerable attention policymakers pay to developing accountability programs worldwide, our results highlight for which groups targeted information provision would likely yield higher returns. Further, these returns should exceed programs that disclose school quality to parents of all students. That said, education policymakers face additional challenge from incorporating evidence of heterogeneous treatment effects into the design of any policy that may lead to different school choice. While Pareto improvements in welfare can easily be achieved in social and labor policy using ex-post targeted transfers, the effectiveness of redistributing students across schools also depends on how peer groups influence academic outcomes.21

We would like to conclude by emphasizing that our multiple testing approach is generally applicable in various other ways beyond what this paper demonstrated. First, the tests can be applied to situations with multiple treatments (e.g., 2) or situations where there is selection on unobservables that explore if there is heterogeneity in marginal treatment effects (e.g., Heckman and Vytlacil, 2005; Brinch, Mogstad, and Wiswall, 2017). Second, instead of using inverse propensity score weighting, we may directly use the conditional distribution functions or conditional quantile functions to identify the treatment effects as proposed by Chernozhukov, Fernandez-Val, and Melly (2013). Extending their proposal to multiple testing procedures to test for treatment effect heterogeneity across the distribution or quantile function with or without subgroups has the potential to complement this paper by expanding insights in empirical microeconomics.

References

\footnote{21These challenges are illustrated in Ding and Lehrer (2007) who use a partial linear model to demonstrate the non-linear shape of the peer effect function changes from convex to concave to convex across the test score distribution.}

