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A Additional motivation for the testing procedure from

an empirical perspective

The well-documented diverse and heterogeneous behavior in how individuals respond to a

particular treatment or intervention has not only changed how economists think about econo-

metric models and policy evaluation but also has profound consequences for the scientific

evaluation of public policy. James Heckman stresses this point in his 2001 Nobel lecture,

where he notes that conditional mean impacts including the average treatment effect may

provide limited guidance for policy design and implementation (Heckman, 2001). Although

the importance of heterogeneous treatment effects is widely recognized in the causal inference

literature, common practice remains to report an average causal effect parameter. While an

increasing number of studies account for possible treatment effect heterogeneity when eval-

uating programs or other interventions, most conduct statistical inference without allowing

for dependence across subgroups.

As Fink, McConnell, and Vollmer (2014) point out, a majority of studies based on field

experiments published in 10 specific journals estimate separate average causal parameters

for different subgroups, but report traditional standard errors and p-values when testing for

heterogeneous treatment effects through interaction terms or subgroup analyses. This is in-

appropriate because each interaction term represents a separate hypothesis beyond the orig-

inal experimental design and results in a substantially increased type I error. The problem

when testing multiple hypotheses jointly is the potential over-rejection of the null hypothesis.

Intuitively, if the null hypothesis of no treatment effect is true, testing it across 100 sub-

samples, we expect about five rejections at the 95 percent confidence level. However, since

the probability of a false positive equals 0.05 for each individual hypothesis, the probability

of falsely rejecting at least one true null hypothesis may be much larger. Hence, the type I

error exceeds the nominal size of the test.

A similar observation can be made for distributional treatment effects. A growing num-

ber of studies examine if treatment effects differ across quantiles of the outcome variable,

i.e. they estimate quantile treatment effects (QTEs) (e.g., Heckman, Smith, and Clements,

1997; Friedlander and Robins, 1997; Abadie, 2002; Bitler, Gelbach, and Hoynes, 2006; Firpo,

2007). Testing for the presence of positive (or, generally, non-zero) QTEs involves a test of

multiple hypotheses, for example 99 hypotheses in the case of percentile treatment effects.

Therefore, the naive approach of comparing individual test results to find quantile groups

with positive and statistically significant treatment effects inevitably suffers from the issue

of data mining due to the reuse of the same data as emphasized by White (2000). As a
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result, the type I error rates can exceed the desired level of the test, which leads researchers

to reject “too many” individual hypotheses.1 To the best of our knowledge, no published

study estimating distributional treatment effects makes such a correction. Among articles

published in five high-impact economic journals between 2008 to 2017 that estimate dis-

tributional treatment effects none corrects inference for multiple testing (Allen, Clark, and

Houde, 2014; Angrist, Lang, and Oreopoulos, 2009; Bandiera et al., 2017; Banerjee et al.,

2015; Behaghel, de Chaisemartin, and Gurgand, 2017; Brown et al., 2014; Crepon et al.,

2015; Evans and Garthwaite, 2012; Fack and Landais, 2010; Fairlie and Robinson, 2013;

McKenzie, 2017; Meyer and Sullivan, 2008; Muralidharan, Niehaus, and Sukhtankar, 2016).

The absence of these corrections may reflect that econometric testing procedures for QTEs

were not previously developed. Lehrer, Pohl, and Song (2021) aims to fill that gap and also

provide a formal result of asymptotic validity when the propensity scores are parametrically

specified.

B Mathematical proofs

Throughout the proof, we assume that B “ 8 for simplicity, so that we ignore the bootstrap

simulation errors in the proof. Our first result is the asymptotic linear representation of
?
npq̂dpτq´qdpτqq and its bootstrap version that is uniform over τ P rτL, τU s. Let us introduce

some notation. Let

aτ pYi; qq “ τ ´ 1tYi ď qu, (1)

and for u P R,

∆pYi; q, uq “
?
n

ż 1

0

`

aτ pYi; q ` n
´1{2usq ´ aτ pYi; qq

˘

ds. (2)

Note that the right hand side in (2) does not depend on τ .

Let JdpτU , τLq “ tqdpτq : τ P rτL, τU su, and assume that it is bounded in R. (See

Assumption 2.3(ii) of the main text.) For q P JdpτU , τLq and u P R, let

ϕnpYi; q, uq “
∆pYi; q, uq

n3{4
“ ´n´1{4

ż 1

0

1tq ă Yi ď q ` n´1{2usuds. (3)

1In part as a response, statistical inference procedures developed in Heckman, Smith, and Clements
(1997), Abadie, Angrist, and Imbens (2002), Rothe (2010), and Maier (2011), among others, focus on the
whole distribution of potential outcomes to side-step multiple comparisons.
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Let B be a class of bounded measurable functions b : R ˆ X ˆ t0, 1u Ñ R. Define for each

u P R,

Hnpuq “ tϕnp¨; q, uqbp¨q : pq, bq P JdpτU , τLq ˆ Bu. (4)

We let Vi “ pYi, X
1
i, Diq P RdV for brevity of notation.

We introduce a pseudo-norm } ¨ }P,2 on the set of measurable functions on RˆX ˆt0, 1u:
}f}P,2 “ pE|fpViq|

2q1{2, for any measurable map f . We also denote the sup norm by } ¨ }8:

}f}8 “ supvPRdV |fpvq|. For each ε ą 0 and u P R, let Nrspε,Hnpuq, } ¨ }P,2q denote the

ε-bracketing number of Hnpuq with respect to } ¨ }P,2 (see van der Vaart and Wellner, 1996,

p. 83).

Lemma B.1 For u P R, there exist constants C1, C2, C3, C4 ą 0 such that for each ε P p0, 1q,

there are brackets rhL,j, hU,js with 1 ď j ď Npεq, satisfying that the brackets cover Hnpuq

and for each k ě 2,

Er|hL,jpViq ´ hU,jpViq|
k
s ď C1pC2n

´1{4
q
k´2ε2, (5)

and

logNpεq ď C3 ´ C3 logpεq ` C4 logNrspCε
2,B, } ¨ }2q. (6)

Proof: First, define for δ ą 0,

zδpy; q, s, uq “ p1´mintpy ´ q ´ n´1{2usq{δ, 1uq1t0 ă y ´ q ´ n´1{2usu (7)

`1ty ´ q ´ n´1{2us ď 0u.

Define

ϕU,δpy; q, uq “

ż 1

0

ϕU,δpy; q, s, uqds, and (8)

ϕL,δpy; q, uq “

ż 1

0

ϕL,δpy; q, s, uqds, (9)

where

ϕU,δpy; q, s, uq “ zδpy; q, sq ´ zδpy ` δ ` n
´1{2us; q, sq, and (10)

ϕL,δpy; q, s, uq “ min
 

zδpy ` δ; q, sq, zδp´y ` 2q ` δ ` n´1{2us; q, sq
(

. (11)
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Figure 1: Illustration of ϕU,δ, ϕL,δ: The solid thick line depicts ϕp¨; q, s, uq, the solid thin line
ϕU,δp¨; q, s, uq and the dotted line ϕL,δp¨; q, s, uq. Here we take n´1{2us “ 0.5, q “ 0.5 and
δ “ 0.2. The absolute slope of both maps ϕU,δp¨; q, s, uq and ϕL,δp¨; q, s, uq are bounded by
1{δ.

Let ϕpy; q, s, uq “ 1ty ´ q ´ n´1{2us ď 0u ´ 1ty ´ q ď 0u and define

ϕnpy; q, uq “ n´1{4

ż 1

0

ϕpy; q, s, uqds. (12)

Note that the definition (3) conforms with this.

Then, we have for all y P R, (see Figure 1)

ϕL,δpy; q, uq ď n1{4ϕnpy; q, uq ď ϕU,δpy; q, uq. (13)

It is not hard to see that for all q, q1 P R, and all y P R,

|ϕU,δpy; q, uq ´ ϕU,δpy; q1, uq| ď |q ´ q1|{δ, and (14)

|ϕL,δpy; q, uq ´ ϕL,δpy; q1, uq| ď |q ´ q1|{δ.

Furthermore, for some constant C ą 0,

E
“

pϕU,δpYi; q, uq ´ ϕL,δpYi; q, uqq
2
|Di “ d

‰

ď Cδ, (15)

and

E
“

ϕ2
U,δpYi; q, uq|Di “ d

‰

ď 1, and E
“

ϕ2
L,δpYi; q, uq|Di “ d

‰

ď 1. (16)
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Define

HL,δpuq “ tϕL,δp¨; q, uqbp¨q{n
1{4 : pq, bq P JdpτU , τLq ˆ Bu, and (17)

HU,δpuq “ tϕU,δp¨; q, uqbp¨q{n
1{4 : pq, bq P JdpτU , τLq ˆ Bu. (18)

From (14) and using the fact that n ě 1, JdpτU , τLq is bounded, and ϕL,δp¨; q, uq, ϕU,δp¨; q, uq

and bp¨q are bounded maps, we find that

Nrspε,HL,δpuq, } ¨ }P,2q ď Cpεδq´1
ˆNrspCε,B, } ¨ }P,2q, and (19)

Nrspε,HU,δpuq, } ¨ }P,2q ď Cpεδq´1
ˆNrspCε,B, } ¨ }P,2q,

for all ε ą 0, for some constant C ą 0. We take δ “ ε2 and ε2-brackets rhL,a,j, hL,b,js
N
j“1 and

rhU,a,j, hU,b,js
N
j“1 such that the former set of brackets cover HL,ε2puq and the latter HU,ε2puq,

both with respect to } ¨ }P,2, and

}hU,a,j}8 ` }hU,b,j}8 ` }hL,a,j}8 ` }hL,b,j}8 ď
C

n1{4
, (20)

for all j “ 1, ..., N , for some constant C ą 0. By (13) and (19), we lose no generality by

taking brackets so that for each h P Hnpuq, there exists j P t1, ..., Nu such that2

minthU,b,j, hL,a,ju ď h ď maxthL,a,j, hU,b,ju, (21)

and

logN ď C ´ C log ε` C logNrspCε
2,B, } ¨ }P,2q, (22)

for some C ą 0. We set

hL,j “ minthU,b,j, hL,a,ju, and hU,j “ maxthU,b,j, hL,a,ju. (23)

2Since b can take negative values, the inequality (13) does not necessarily imply that hL,a,j ď h ď hU,b,j .
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Therfore, by (20) and (15), for each k ě 2,

Er|hL,jpViq ´ hU,jpViq|
k
s ď CpCn´1{4

q
k´2E

“

phL,a,jpViq ´ hU,b,jpViqq
2
‰

(24)

ď 2CpCn´1{4
q
k´2E

“

phL,a,jpViq ´ hL,b,jpViqq
2
‰

`4CpCn´1{4
q
k´2E

“

phL,b,jpViq ´ hU,a,jpViqq
2
‰

`4CpCn´1{4
q
k´2E

“

phU,a,jpViq ´ hU,b,jpViqq
2
‰

ď C1pC2n
´1{4

q
k´2

`

ε4
` ε2

` ε4
˘

,

for some constants C,C1, C2 ą 0. The terms ε4 are due to the choice of ε2-brackets and the

term ε2 comes from (15) and δ “ ε2. �

Define for each τ P rτL, τU s and b P B,

Upτ, b; δq “ tpτ1, b1q P rτL, τU s ˆ B : |τ ´ τ1| ` }b´ b1}P,2 ď δu. (25)

Recall the definitions of aτ pYi; qq and ∆pYi; q, uq in (1) and (2).

Lemma B.2 Suppose that B and Hnpuq are as in Lemma B.1, for some u P R, and that for

d “ 0, 1, the density fd of Ydi is bounded. Furthermore, assume that there exists C ą 0 such

that for all ε ą 0,

logNrspε,B, } ¨ }P,2q ď C ´ C log ε. (26)

Then the following statements hold.

(i) There exist s ą 0 and C ą 0 such that for all n ě 1, and for all δ ą 0,

E

«

sup
pτ1,b1qPUpτ,b;δq

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

n
ÿ

i“1

paτ1pYi; qdpτ1qqb1pViq ´ E raτ1pYi; qdpτ1qqb1pViqsq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď Cδs.

(ii) There exists C ą 0 such that for all n ě 1,

E

«

sup
hPHnpuq

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

phpViq ´ E rhpViqsq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď C log n.

Proof: (i) Let

B1 “ taτ p¨; qq : pτ, qq P rτL, τU s ˆ Ru. (27)
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Certainly, B1 is a VC class. Both classes B1 and B are classes of bounded functions. Hence,

if we let B2 be the collection of functions fp¨qgp¨q as we run f P B1 and g P B, we have for

some constant C ą 0,

logNrspε,B2, } ¨ }P,2q ď C ´ C log ε` logNrspCε,B, } ¨ }P,2q. (28)

Using (26), we obtain the finite integral bracketing entropy bound for the left hand side of

(28). The desired result of (i) follows by the maximal inequality. (For example, see (1) in

van der Vaart (1996).)

(ii) When u “ 0, we have ∆pYi; qdpτq, uq “ 0, a.s. We focus on the case u ‰ 0. Observe

that since b is bounded and |ϕnpYi; q, uq| ď 1, for some constant C ą 0,

E
”

|ϕnpYi; q, uqbpViq|
k
ı

ď CE
“

|ϕnpYi; q, uq|
k
‰

ď CE
“

ϕ2
npYi; q, uq

‰

, (29)

for all k ě 2. Observe that

E
“

ϕ2
npYi; q, uq

‰

ď
1
?
n

ż 1

0

P tq ď Yi ď q ` n´1{2usuds (30)

“
1
?
n

ż 1

0

P tq ď Y1i ď q ` n´1{2us|Di “ 1uP tDi “ 1uds

`
1
?
n

ż 1

0

P tq ď Y0i ď q ` n´1{2us|Di “ 0uP tDi “ 0uds

ď
1
?
n

ż 1

0

P tq ď Y1i ď q ` n´1{2usuds (31)

`
1
?
n

ż 1

0

P tq ď Y0i ď q ` n´1{2usuds

ď
2

n
max
d“0,1

sup
qPR

fdpqqu.

Using this in combination with Lemma B.1, we apply Theorem 6.8 of Massart (2007) (taking

b “ 1 and σ “ Cn´1{2 there) to obtain that

E

«

sup
hPHnpuq

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

phpViq ´ EhpViqq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď C1 ` C1

?
n

ż C1{
?
n

0

a

logp1{zqdz ` C1 log n

ď C2 log n,

for some constants C1, C2 ą 0 from large n on. Thus we obtain the desired result. �
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Lemma B.3 For d “ 0, 1,

n
ÿ

i“1

pτ ´ 1tYi ď q̂dpτquq1tDi “ du

p̂dpXiq
“ 0. (32)

Proof: Note Knight’s identity (see (15) on page 1822 of Kato (2009))

ρτ px´ yq ´ ρτ pxq “ ´ypτ ´ 1tx ď 0uq ` y

ż 1

0

p1tx ď ysu ´ 1tx ď 0uqds. (33)

Take any ε ą 0. By the definition of q̂dpτq as a minimizer of Q̂dpq, τq over q defined in Section

2.2.3,

0 ď Q̂dpq̂dpτq ´ ε, τq ´ Q̂dpq̂dpτq, τq (34)

“ ´ε
n
ÿ

i“1

pτ ´ 1tYi ď q̂dpτquq1tDi “ du

p̂dpXiq
(35)

` ε
n
ÿ

i“1

ş1

0
p1tYi ď q̂dpτq ` εsu ´ 1tYi ď q̂dpτquqds1tDi “ du

p̂dpXiq
(36)

and

0 ď Q̂dpq̂dpτq ` ε, τq ´ Q̂dpq̂dpτq, τq (37)

“ ε
n
ÿ

i“1

pτ ´ 1tYi ď q̂dpτquq1tDi “ du

p̂dpXiq
(38)

´ ε
n
ÿ

i“1

ş1

0
p1tYi ď q̂dpτq ´ εsu ´ 1tYi ď q̂dpτquqds1tDi “ du

p̂dpXiq
. (39)

Hence

n
ÿ

i“1

ş1

0
p1tYi ď q̂dpτq ´ εsu ´ 1tYi ď q̂dpτquqds1tDi “ du

p̂dpXiq
(40)

ď

n
ÿ

i“1

pτ ´ 1tYi ď q̂dpτquq1tDi “ du

p̂dpXiq
(41)

ď

n
ÿ

i“1

ş1

0
p1tYi ď q̂dpτq ` εsu ´ 1tYi ď q̂dpτquqds1tDi “ du

p̂dpXiq
. (42)

By sending εÑ 0, we obtain the desired result. �
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Theorem B.1 Suppose that Assumptions 2.2 and 2.3 in the main text hold, and let

ζi “ ψpViq ´ EψpViq, and ζ˚i “ ψpV ˚i q ´ ErψpV
˚
i q|Fns. (43)

Then the following statements hold.

(i)

?
npq̂dpτq ´ qdpτqq

“
1

?
nfdpqdpτqq

n
ÿ

i“1

aτ pYi; qdpτqq1tDi “ du

pdpXiq

`
1

?
nfdpqdpτqq

n
ÿ

j“1

E

„

aτ pYi; qdpτqqgdpXi; β0q
11tDi “ du

p2
dpXiq



ζj ` oP p1q,

uniformly over τ P rτL, τU s.

(ii)

?
npq̂˚d pτq ´ q̂dpτqq

“
1

?
nfdpqdpτqq

n
ÿ

j“1

˜

aτ pY
˚
j ; qdpτqq1tDj “ du

pdpX˚
j q

´
1

n

n
ÿ

i“1

aτ pYi; qdpτqq1tDi “ du

pdpXiq

¸

`
1

?
nfdpqdpτqq

n
ÿ

j“1

E

„

aτ pYi; qdpτqqgdpXi; β0q
11tDi “ du

p2
dpXiq



ζ˚j ` oP p1q,

uniformly over τ P rτL, τU s.

Proof: (i) Note that by the definition of q̂dpτq,

?
npq̂dpτq ´ qdpτqq “ arg min

uPR
Q̂dpqdpτq ` n

´1{2u; τq

“ arg min
uPR

´

Q̂dpqdpτq ` n
´1{2u; τq ´ Q̂dpqdpτq; τq

¯

.

Recall the definitions of Q̂dpq; τq and Qdpq; τq in Section 2.2.3 of the main text. We write

Q̂dpqdpτq ` n
´1{2u; τq ´ Q̂dpqdpτq; τq “ An `Bn, (44)
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where

An “ Q̂dpqdpτq ` n
´1{2u; τq ´ Q̂dpqdpτq; τq (45)

´
`

Qdpqdpτq ` n
´1{2u; τq ´Qdpqdpτq; τq

˘

, and (46)

Bn “ Qdpqdpτq ` n
´1{2u; τq ´Qdpqdpτq; τq.

We can follow the same arguments as in the proof of Theorem 3 of Kato (2009), and show

that

Bn “ ´
u
?
n

n
ÿ

i“1

aτ pYi; qdpτqq1tDi “ du

pdpXiq
`
u2

2
fdpqdpτqq ` oP p1q, (47)

uniformly over τ P rτL, τU s. Let us focus on An. Using Knight’s identity in (33), we write

An as

uZ
p1q
n,dpτq ` Z

p2q
n,dpu, τq, (48)

where

Z
p1q
n,dpτq “

1
?
n

n
ÿ

i“1

aτ pYi; qdpτqq1tDi “ du

pdpXiq

ˆ

pdpXiq

p̂dpXiq
´ 1

˙

, and (49)

Z
p2q
n,dpu, τq “ ´

u

n

n
ÿ

i“1

ˆ

pdpXiq

p̂dpXiq
´ 1

˙

∆pYi; qdpτq, uq1tDi “ du

pdpXiq
. (50)

We write

Z
p1q
n,dpτq “

1
?
n

n
ÿ

i“1

aτ pYi; qdpτqq1tDi “ du

pdpXiq

pdpXiq ´ p̂dpXiq

pdpXiq
`Rnpτq, (51)

where

Rnpτq “
1
?
n

n
ÿ

i“1

aτ pYi; qdpτqq1tDi “ du

pdpXiq

ppdpXiq ´ p̂dpXiqq
2

pdpXiqp̂dpXiq
. (52)

By expanding Gpx; β̂q around β0 and using Assumption 2.3 (i), it is not hard to see that

p̂dpxq ´ pdpxq “ gdpx; β0q
1
pβ̂ ´ β0q `OP pn

´1
q, (53)
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uniformly over x P X . Since |aτ pYi; qdpτqq{pdpXiq| ď ε´1 for all τ P rτL, τU s by Assumption

2.1(ii), we find that

sup
τPrτL,τU s

|Rnpτq| “ OP pn
´1{2

q. (54)

Applying this and the expansion in (53) to the leading term on the right hand side of (51),

we obtain that

Z
p1q
n,dpτq “ ´

1
?
n

n
ÿ

i“1

aτ pYi; qdpτqq1tDi “ du

pdpXiq

gdpXi; β0q
1pβ̂ ´ β0q

pdpXiq
` oP p1q

“ ´

˜

1

n

n
ÿ

i“1

aτ pYi; qdpτqq1tDi “ du

pdpXiq

gdpXi; β0q
1

pdpXiq

¸˜

1
?
n

n
ÿ

i“1

ζi ` oP p1q

¸

` oP p1q

“ ´E

„

aτ pYi; qdpτqq1tDi “ du

pdpXiq

gdpXi; β0q
1

pdpXiq



1
?
n

n
ÿ

i“1

ζi ` oP p1q,

by Lemma B.2(i). Using the same arguments, we also obtain that

Z
p2q
n,dpu, τq “ ´u

˜

1

n

n
ÿ

i“1

∆pYi; qdpτq, uq1tDi “ du

pdpXiq

gdpXi; β0q
1

pdpXiq

¸

1

n

n
ÿ

i“1

ζi ` oP p1q “ oP p1q.

We define b0pViq “ 1tDi “ dugd,kpXi; β0q{p
2
dpXiq, where gd,kpXi; β0q is the k-th entry of

gdpXi; β0q, and take B “ tb0u, i.e., the singleton of b0 in the definition of Hnpuq in (4). We

bound

sup
τPrτL,τU s

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

∆pYi; qdpτq, uq1tDi “ du

pdpXiq

gd,kpXi; β0q

pdpXiq

´E

„

∆pYi; qdpτq, uq1tDi “ du

pdpXiq

gd,kpXi; β0q

pdpXiq

ˇ

ˇ

ˇ

ˇ

ď n´1{4 sup
hPHnpuq

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

phpViq ´ EhpViqq

ˇ

ˇ

ˇ

ˇ

ˇ

.

By Lemma B.2(ii), we find that uniformly over τ P rτL, τU s,

1

n

n
ÿ

i“1

∆pYi; qdpτq, uq1tDi “ du

pdpXiq

gd,kpXi; β0q

pdpXiq
“ E

„

∆pYi; qdpτq, uq1tDi “ du

pdpXiq

gd,kpXi; β0q

pdpXiq



`Opn´1{4 log nq.
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Since Erζis “ 0, we find that

Z
p2q
n,dpu, τq “ oP p1q, uniformly over τ P rτL, τU s. (55)

Therefore, we conclude that

An “ ´E

„

aτ pYi; qdpτqq1tDi “ du

pdpXiq

gdpXi; β0q
1

pdpXiq



1
?
n

n
ÿ

i“1

ζi ` oP p1q. (56)

Combining this with (47), and applying Theorem 2 of Kato (2009), we obtain the desired

result of (i).

(ii) The proof of the bootstrap version is similar to that of (i). First, we write

?
npq̂˚d pτq ´ q̂dpτqq “ arg min

uPR
Q̂˚dpq̂dpτq ` n

´1{2u; τq ´ Q̂˚dpq̂dpτq; τq, (57)

where

Q̂˚dpq; τq “

n
ÿ

i“1

1tD˚i “ du

p̂˚dpX
˚
i q

ρτ pY
˚
i ´ qq, and (58)

Q˚dpq; τq “

n
ÿ

i“1

1tD˚i “ du

p̂dpX˚
i q

ρτ pY
˚
i ´ qq. (59)

Similarly as before, we write

Q̂˚dpq̂dpτq ` n
´1{2u; τq ´Q˚dpq̂dpτq; τq “ A˚n `B

˚
n, (60)

where

A˚n ” Q̂˚dpq̂dpτq ` n
´1{2u; τq ´ Q̂˚dpq̂dpτq; τq (61)

´pQ˚dpq̂dpτq ` n
´1{2u; τq ´Q˚dpq̂dpτq, and (62)

B˚n ” Q˚dpq̂dpτq ` n
´1{2u; τq ´Q˚dpq̂dpτq; τq.

Following the similar arguments as before, we obtain that

A˚n “ ´uE

«

aτ pY
˚
i ; q̂dpτqq1tD

˚
i “ du

p̂dpX˚
i q

gdpX
˚
i ; β̂q1

p̂dpX˚
i q

|Fn

ff

1
?
n

n
ÿ

i“1

ζ˚i ` oP p1q. (63)

13



Note that from (i) of this theorem and Assumption 2.2(i),

sup
τPrτL,τU s

|q̂dpτq ´ qdpτq| “ oP p1q, and β̂ “ β0 ` oP p1q. (64)

Hence using Lemma B.2(i), we obtain that

E

«

aτ pY
˚
i ; q̂dpτqq1tD

˚
i “ du

p̂dpX˚
i q

gdpX
˚
i ; β̂q1

p̂dpX˚
i q

|Fn

ff

(65)

“
1

n

n
ÿ

i“1

aτ pYi; q̂dpτqq1tDi “ du

p̂dpXiq

gdpXi; β̂q
1

p̂dpXiq

“
1

n

n
ÿ

i“1

aτ pYi; qdpτqq1tDi “ du

pdpXiq

gdpXi; β0q
1

pdpXiq
` oP p1q

“ E

„

aτ pYi; qdpτqq1tDi “ du

pdpXiq

gdpXi; β0q
1

pdpXiq



` oP p1q.

Let us turn to B˚n defined in (61). Using Knight’s identity, we write B˚n as

uZ
˚p1q
n,d pτq ` Z

˚p2q
n,d pu, τq, (66)

where

Z
˚p1q
n,d pτq “

1
?
n

n
ÿ

i“1

aτ pY
˚
i ; q̂dpτqq1tD

˚
i “ du

p̂dpX˚
i q

, and (67)

Z
˚p2q
n,d pu, τq “ ´

u

n

n
ÿ

i“1

∆̂pY ˚i ; q̂dpτq, uq1tD
˚
i “ du

p̂dpX˚
i q

, (68)

with

∆̂pY ˚i ; q̂dpτq, uq “
?
n

ż 1

0

`

aτ pY
˚
i ; q̂dpτq ` n

´1{2usq ´ aτ pY
˚
i ; q̂dpτqq

˘

ds. (69)

14



Let us first consider Z
˚p2q
n,d pu, τq. Recall the notation Vi “ pYi, X

1
i, Diq and V ˚i “ pY

˚
i , X

˚1
i , D

˚
i q.

We write Z
˚p2q
n,d pu, τq as

´
u

n

n
ÿ

i“1

˜

η̃pV ˚i ; q̂dpτq, β̂q ´
1

n

n
ÿ

i“1

η̃pVi; q̂dpτq, β̂q

¸

(70)

´
u

n

n
ÿ

i“1

ˆ

η̃pVi; q̂dpτq, β̂q ´

ż

η̃pv; q̂dpτq, β̂qdFV pvq

˙

´u

ˆ
ż

η̃pv; q̂dpτq, β̂qdFV pvq ´

ż

η̃pv; qdpτq, β0qdFV pvq

˙

´uE

„

∆pYi; qdpτqq1tDi “ du

pdpXiq



, (71)

where FV is the CDF of Vi, and

η̃pV ˚i ; q̂dpτq, β̂q “
∆pY ˚i ; q̂dpτqq1tD

˚
i “ du

p̂dpX˚
i q

. (72)

We show that the first two terms in (70) are oP p1q uniformly over τ P rτL, τU s. We will deal

with the first term in (70). By Assumptions 2.1(ii) and 2.3(i) in the main text, we can find

ε ą 0 such that Gdpx; βq ą 0 for all x P X and all β P Bpβ0; εq, where Bpβ0; εq “ tβ P Θ :

}β ´ β0} ď εu. Define

bβpViq “
1tDi “ du

GdpXi; βq
, (73)

and let

B “ tbβ : β P Bpβ0; εqu, (74)

and define Hnpuq as in (4) using this B. Since the set Bpβ0; εq is bounded in Rdβ , by

Assumptions 2.1(ii) and 2.3(i) in the main text, we find that the bracketing condition in

(26) is satisfied for this set B. Furthermore, by Assumption 2.2(i) in the main text, we have

15



β̂ P Bpβ0; εq with probability approaching one. Now, observe that

sup
τPrτL,τU s

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

ˆ

∆pY ˚i ; q̂dpτq, uq1tD
˚
i “ du

p̂dpX˚
i q

(75)

´E

„

∆pY ˚i ; q̂dpτq, uq1tD
˚
i “ du

p̂dpX˚
i q

|Fn

˙ˇ

ˇ

ˇ

ˇ

ď n´1{4 sup
hPHnpuq

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

phpV ˚i q ´ ErhpV
˚
i q|Fnsq

ˇ

ˇ

ˇ

ˇ

ˇ

“ OP pn
´1{4 log nq,

by Lemma B.2(ii). Thus the first term in (70) is oP p1q uniformly over τ P rτL, τU s. The

second term can be dealt with in the same way.

Let us turn to the third term in (70). This term is also oP p1q because q̂dpτq “ qdpτq`oP p1q

and β̂ “ β0 ` oP p1q. Following precisely the same argument in the proof of Theorem 3 in

Kato (2009) used to deal with Bn in (45), we can show that

´uE

„

∆pYi; qdpτqq1tDi “ du

pdpXiq



“
u2

2
fdpqdpτqq ` op1q, (76)

uniformly over τ P rτL, τU s.

As for Z
˚p1q
n,d pτq, we use Lemma B.3, and write

Z
˚p1q
n,d pτq “

1
?
n

n
ÿ

i“1

˜

aτ pY
˚
i ; q̂dpτqq1tD

˚
i “ du

GdpX˚
i ; β̂q

´
1

n

n
ÿ

i“1

aτ pYi; q̂dpτqq1tDi “ du

GdpXi; β̂q

¸

.

Using Lemma B.2(i) and similar arguments used to show (75) above, we can show that

Z
˚p1q
n,d pτq “

1
?
n

n
ÿ

i“1

˜

aτ pY
˚
i ; qdpτqq1tD

˚
i “ du

GdpX˚
i ; β0q

´
1

n

n
ÿ

i“1

aτ pYi; qdpτqq1tDi “ du

GdpXi; β0q

¸

` oP p1q.

Hence collecting the results for Z
˚p1q
n,d pτq and Z

˚p2q
n,d pu, τq, we conclude that

Q̂˚dpq̂dpτq ` n
´1{2u; τq ´Q˚dpq̂dpτq; τq

“ ´uE

«

aτ pY
˚
i ; q̂dpτqq1tD

˚
i “ du

p̂dpX˚
i q

gdpX
˚
i ; β̂q1

p̂dpX˚
i q

|Fn

ff

1
?
n

n
ÿ

i“1

ζ˚i

´u
1
?
n

n
ÿ

i“1

˜

aτ pY
˚
i ; qdpτqq1tD

˚
i “ du

GdpX˚
i ; β0q

´
1

n

n
ÿ

i“1

aτ pYi; qdpτqq1tDi “ du

GdpXi; β0q

¸

`
u2

2
fdpqdpτqq ` oP p1q.
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Now the desired result follows from Theorem 2 of Kato (2009) similarly as before. �

Let us define

q∆
pτq “ q1pτq ´ q0pτq, and q̂∆

pτq “ q̂1pτq ´ q̂0pτq. (77)

Similarly, we define a bootstrap version q̂∆˚pτq “ q̂˚1 pτq´ q̂
˚
0 pτq. The following theorem gives

the weak convergence of the process t
?
npq̂∆pτq ´ q∆pτqq : τ P rτL, τU su. Let `8prτL, τU sq be

the collection of bounded and measurable functions on rτL, τU s. Let BL1 be the bounded

Lipschitz functionals on `8prτL, τU sq with Lipschitz constant 1, i.e.,

BL1 “ th P `
8
prτL, τU sq : |hpτ1q ´ hpτ2q| ď |τ1 ´ τ2|, τ1, τ2 P rτL, τU su . (78)

For a sequence of stochastic processes Gn and a process G on rτL, τU s, we write

Gn ù G, in `8rτL, τU sq, (79)

as nÑ 8, if

sup
hPBL1

|E˚ rhpGnqs ´ ErhpGqs| Ñ 0, (80)

as n Ñ 8, where E˚ denotes the outer expectation. Let G˚n be a stochastic process on

rτL, τU s such that for each τ P rτL, τU s, G˚npτq is a measurable map of the bootstrap sample

pY ˚i , X
˚
i q. Then if for any ε ą 0,

P ˚
"

sup
hPBL1

|E rhpG˚nq|Fns ´ ErhpGqs| ą ε

*

Ñ 0, (81)

as n Ñ 8, for some we write G˚n ù˚ G in `8prτL, τU sq. Here P ˚ denotes the outer

probability.

Theorem B.2 Suppose that Assumptions 2.2 and 2.3 in the main text hold. Then the

following statements hold.

(i)

?
npq̂∆

´ q∆
q ù G, in `8prτL, τU sq. (82)
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(ii)

?
npq̂∆˚

´ q̂∆
q ù˚ G, in `8prτL, τU sq. (83)

Proof: Define

G “ tξp¨; q, τq : pq, τq P JdpτU , τLq ˆ rτL, τU su, (84)

where

ξpVj; q, τq “ ´
aτ pYj; qq1tDi “ du

fdpqqpdpXiq
(85)

`E

„

aτ pYi; qqgdpXi; β0q
11tDi “ du

fdpqqp2
dpXiq



ζj ` oP p1q. (86)

For (i), it suffices to show that G is P -Donsker. This also implies (ii) by Theorem 2.2 of

Giné (1997, p. 104). Define

νnpξq “
1
?
n

n
ÿ

i“1

pξpViq ´ EξpViqq. (87)

The convergence of finite dimensional distributions of tνnpξq : ξ P Gu follow by the usual

central limit theorem. In order to show that G is P -Donsker, it suffices to show that G
is totally bounded with respect to a pseudo-norm ρ and tνnpξq : ξ P Gu is asymptotically

equicontinuous with respect to ρ. We take the norm ρ to be } ¨ }P,2. The total boundedness

follows by the same arguments as in the proof of (i) of Lemma B.2. It remains to show

asymptotic equicontinuity of the process νn. For this, we write

?
npq̂∆

pτq ´ q∆
pτqq “ ´An,1pqdpτq, τq ` An,2pqdpτq, τq ` oP p1q, (88)

where

An,1pq, τq “
1

?
nfdpqq

n
ÿ

j“1

aτ pYj; qq1tDj “ du

pdpXjq
, and (89)

An,2pq, τq “
1

?
nfdpqq

n
ÿ

j“1

E

„

aτ pYi; qqgdpXi; β0q
11tDi “ du

p2
dpXiq



ζj. (90)
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Stochastic equicontinuity of tAn,1pq, τq : pq, τq P JdpτU , τLq ˆ rτL, τU su obviously follows from

Lemma B.2(i) and the Lipshitz continuity of 1{fdpqq in q P JdpτU , τLq. It is not hard to show

similarly that An,2 is stochastically equicontinuous as well. �

We are prepared to prove Theorem 2.1 in the main text.

Proof of Theorem 2.1 in the main text:3 For the proof, we follow arguments similar to

Romano and Shaikh (2010). Define for any W 1 Ă W ,

ĉ1´αpW
1
q “ inf

#

c P R :
1

B

B
ÿ

b“1

1 tT ˚b pW
1
q ď cu ě 1´ α

+

.

In light of Theorem 2.1 of Romano and Shaikh (2010) and the fact that the functional

supwPW 1 Γp¨, Swq is increasing in W 1, it suffices to show that

lim sup
nÑ8

P

"

sup
wPWP

Γp
?
npq̂∆

´ q∆
q;Swq ą ĉ1´αpWP q

*

ď α. (91)

By the continuous mapping theorem, we have

sup
wPWP

Γp
?
npq̂∆

´ q∆
q;Swq Ñd sup

wPWP

ΓpG;Swq,

as nÑ 8. Similarly, by the continuous mapping theorem of the bootstrap empirical process

(e.g. Varron (2019)), we obtain that

sup
wPWP

Γp
?
npq̂∆˚

´ q∆˚
q;Swq Ñ

˚
d sup
wPWP

ΓpG;Swq,

as n Ñ 8, where Ñ˚
d denotes the convergence in bootstrap distribution in probability.

Since supwPWP
Γp¨;Swq is a nonnegative convex functional, its CDF is continuous and strictly

increasing on p0,8q by Theorem 11.1 of Davydov, Lifshits, and Smorodina (1998). Let

c1´αpWP q be the 1´ α quantile of the distribution of supwPWP
ΓpG;Swq. By Theorem 1.2.1

of Politis, Romano, and Wolf (1999),

ĉ1´αpWP q ÑP c1´αpWP q,

3We thank an anonymous referee for pointing out a gap in the proof in our previous manuscript.
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as nÑ 8. Hence for any ε ą 0,

P

"

sup
wPWP

Γp
?
npq̂∆

´ q∆
q;Swq ą c1´αpWP q ` ε

*

` op1q (92)

ď P

"

sup
wPWP

Γp
?
npq̂∆

´ q∆
q;Swq ą ĉ1´αpWP q

*

ď P

"

sup
wPWP

Γp
?
npq̂∆

´ q∆
q;Swq ą c1´αpWP q ´ ε

*

` op1q.

However,

P

"

sup
wPWP

Γp
?
npq̂∆

´ q∆
q;Swq ą c1´αpWP q ` ε

*

“ P

"

sup
wPWP

ΓpG;Swq ą c1´αpWP q ` ε

*

Ñ α,

as nÑ 8 and then εÑ 0. Since the CDF of supwPWP
ΓpG;Swq is continuous, we apply the

same argument to the upper bound in (92), we obtain (91). �

C Robustness checks

In this section, we present two additional analyses as robustness checks to our main multiple

testing results without subgroups (see Figure 1 in the paper). First, to ensure that type

I error rates and power are uniform across quantiles, we use the bootstrap interquartile

range rescaling in Algorithm 3 of Chernozhukov, Fernandez-Val, and Melly (2013) before

conducting the step-down procedure. The multiple testing results in Figure 2 reveal that, in

contrast to our main results in Figure 1 of the paper, we cannot reject the null hypothesis

at the 1st and 19th percentiles. Hence, overall, the bootstrap interquartile range rescaling

does not change our findings.

Second, we implement the procedure proposed by Chernozhukov, Fernandez-Val, and

Melly (2013), i.e. we estimate conditional QTE and construct uniform confidence bands,

as an alternative way to determine for which quantiles the null hypothesis of non-positive

QTE is violated. Figure 3 presents the results. While the shape of the estimated QTE

is not identical to Figure 1 in the paper because the Chernozhukov, Fernandez-Val, and

Melly (2013) procedure is based on conditional QTE, we observe a similar general pattern of

treatment effects that decline in magnitude at higher quantiles that also become statistically

insignificant. We find that the null hypothesis is violated for the 5th to the 17th and the
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Note: Multiple testing results show quantiles for which the QTE is positive at an FWER of 5 percent (see
hypothesis (H.3) in Section 2.3 of the main text).

Figure 2: QTE and multiple testing results using the bootstrap interquartile range rescaling,
no subgroups
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Note: QTEs and confidence set estimated following Chernozhukov, Fernandez-Val, and Melly (2013).

Figure 3: QTE and uniform confidence bands, no subgroups
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19th percentiles, which aligns well with our main result. In summary, these robustness checks

reinforce our main findings that ignoring multiple testings leads to substantial inflation in

the number of false positive conclusions and that the set of significantly positive QTE at

lower percentiles supports the distributional effects predicted by the underlying theory.
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